A319211 a(n) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19*20*21*22*23*24*25*26*27 + ... + (up to n).
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362890, 362990, 364200, 380040, 603120, 3966480, 58020480, 980542080, 17643588480, 17643588499, 17643588860, 17643596460, 17643764040, 17647626360, 17740497600, 20066316480, 80634516480, 1718398644480
Offset: 1
Examples
a(1) = 1; a(2) = 1*2 = 2; a(3) = 1*2*3 = 6; a(4) = 1*2*3*4 = 24; a(5) = 1*2*3*4*5 = 120; a(6) = 1*2*3*4*5*6 = 720; a(7) = 1*2*3*4*5*6*7 = 5040; a(8) = 1*2*3*4*5*6*7*8 = 40320; a(9) = 1*2*3*4*5*6*7*8*9 = 362880; a(10) = 1*2*3*4*5*6*7*8*9 + 10 = 362890; a(11) = 1*2*3*4*5*6*7*8*9 + 10*11 = 362990; a(12) = 1*2*3*4*5*6*7*8*9 + 10*11*12 = 364200; a(13) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13 = 380040; a(14) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14 = 603120; a(15) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15 = 3966480; a(16) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16 = 58020480; a(17) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17 = 980542080; a(18) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 = 17643588480; a(19) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19 = 17643588499; etc.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
a[n_]:=Sum[(9*i)!/(9*i-9)!, {i, 1, Floor[n/9] }] + Sum[(1-Sign[Mod[n-j, 9]])*Product[n-i+1, {i, 1, j}], {j, 1, 8}] ; Array[a, 27] (* Stefano Spezia, Apr 18 2023 *) Table[Total[Times@@@Partition[Range[n],UpTo[9]]],{n,30}] (* Harvey P. Dale, Dec 04 2024 *)
Formula
a(n) = Sum_{i=1..floor(n/9)} (9*i)!/(9*i-9)! + Sum_{j=1..8} (1-sign((n-j) mod 9)) * (Product_{i=1..j} n-i+1).
Comments