cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319301 Sum of GCDs of strict integer partitions of n.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 14, 18, 21, 22, 33, 30, 39, 49, 54, 54, 78, 72, 100, 110, 121, 126, 181, 174, 207, 238, 284, 284, 389, 370, 466, 512, 582, 647, 806, 796, 954, 1066, 1265, 1300, 1616, 1652, 1979, 2192, 2452, 2636, 3202, 3336, 3892, 4237, 4843, 5172, 6090
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i*(i+1)/2 `if`(i b(n$2, 0):
    seq(a(n), n=1..61);  # Alois P. Heinz, Mar 17 2019
  • Mathematica
    Table[Sum[GCD@@ptn,{ptn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0,
         With[{t = GCD[i, r]}, If[i < n, b[n - i, Min[i - 1, n - i], t], 0] +
         If[i == n, t, 0] + b[n, i - 1, r]]];
    a[n_] := b[n, n, 0];
    Array[a, 61] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{d|n} A000010(n/d)*A000009(d).
a(n) = Sum_{k=1..n} A000009(gcd(n,k)).
a(n) = Sum_{k=1..n} A000009(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)