cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078392 Sum of GCD's of parts in all partitions of n.

Original entry on oeis.org

1, 3, 5, 9, 11, 20, 21, 35, 42, 61, 66, 112, 113, 168, 210, 279, 313, 461, 508, 719, 852, 1088, 1277, 1756, 2006, 2573, 3106, 3937, 4593, 5958, 6872, 8676, 10305, 12655, 15009, 18664, 21673, 26559, 31447, 38217, 44623, 54386, 63303, 76379, 89696, 106879
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

Equals row sums of triangle A168534. - Gary W. Adamson, Nov 28 2009

Examples

			Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.
		

Crossrefs

Cf. A000010, A000041, A168534, A181844 (the same for LCM), A319301.

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 02 2015
  • Mathematica
    a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)

Formula

a(n) = Sum_{d|n} d * A000837(n/d).
a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - Vladeta Jovovic, May 08 2003
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A000041(gcd(n,k)).
a(n) = Sum_{k=1..n} A000041(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)

A306956 Sum over all partitions of n into distinct parts of the LCM of the parts.

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 21, 39, 58, 90, 142, 218, 325, 465, 695, 948, 1411, 1977, 2883, 3940, 5415, 7422, 10126, 14091, 18947, 25666, 34282, 45890, 60710, 82211, 108510, 142960, 185271, 240595, 315158, 409231, 531967, 688689, 880997, 1126451, 1447754, 1849743
Offset: 0

Views

Author

Alois P. Heinz, Mar 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..44);
  • Mathematica
    b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0, If[n == 0, r, b[n, i-1, r] + b[n-i, Min[i-1, n-i], LCM[i, r]]]];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 44}] (* Jean-François Alcover, Mar 20 2019, translated from Maple *)

Formula

a(n) mod 2 = A040051(n).
a(n) is even <=> n in { A001560 }.
a(n) is odd <=> n in { A052002 }.

A319300 Irregular triangle where T(n,k) is the number of strict integer partitions of n with GCD equal to the k-th divisor of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 4, 1, 4, 1, 0, 1, 6, 1, 1, 7, 2, 0, 1, 11, 1, 10, 2, 1, 1, 0, 1, 17, 1, 17, 4, 0, 1, 23, 2, 1, 1, 26, 4, 1, 0, 1, 37, 1, 36, 6, 2, 1, 0, 1, 53, 1, 53, 7, 2, 1, 0, 1, 70, 4, 1, 1, 77, 11, 0, 1, 103, 1, 103, 10, 4, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			Triangle begins:
   1
   0  1
   1  1
   1  0  1
   2  1
   2  1  0  1
   4  1
   4  1  0  1
   6  1  1
   7  2  0  1
  11  1
  10  2  1  1  0  1
  17  1
  17  4  0  1
  23  2  1  1
  26  4  1  0  1
  37  1
  36  6  2  1  0  1
  53  1
  53  7  2  1  0  1
		

Crossrefs

A regular version is A303138. Row lengths are A000005. Row sums are A000009. First column is A078374.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==k]&]],{n,20},{k,Divisors[n]}]

Formula

T(n,k) = A078374(n/A027750(n,k)).
Showing 1-3 of 3 results.