A319312 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.
1, 3, 7, 22, 67, 242, 885, 3456, 13761, 56342, 234269, 989335, 4225341, 18231145, 79321931, 347676128, 1533613723, 6803017863, 30328303589, 135808891308, 610582497919, 2755053631909, 12472134557093, 56630659451541, 257841726747551, 1176927093597201
Offset: 1
Keywords
Examples
The a(3) = 7 trees: (3) (21) (111) ((1)(2)) ((1)(11)) ((1)(1)(1)) ((1)((1)(1)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; phyfacs[n_]:=Prepend[Join@@Table[Union[Sort/@Tuples[phyfacs/@f]],{f,Select[facs[n],Length[#]>1&]}],n]; Table[Sum[Length[phyfacs[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,6}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=[]); for(n=1, n, v=concat(v, numbpart(n) + EulerT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Sep 18 2018
Extensions
Terms a(14) and beyond from Andrew Howroyd, Sep 18 2018
Comments