cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319312 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 7, 22, 67, 242, 885, 3456, 13761, 56342, 234269, 989335, 4225341, 18231145, 79321931, 347676128, 1533613723, 6803017863, 30328303589, 135808891308, 610582497919, 2755053631909, 12472134557093, 56630659451541, 257841726747551, 1176927093597201
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Also the number of orderless tree-factorizations of Heinz numbers of integer partitions of n.
Also the number of phylogenetic trees on a multiset of labels summing to n.

Examples

			The a(3) = 7 trees:
  (3)    (21)        (111)
       ((1)(2))    ((1)(11))
                  ((1)(1)(1))
                 ((1)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    phyfacs[n_]:=Prepend[Join@@Table[Union[Sort/@Tuples[phyfacs/@f]],{f,Select[facs[n],Length[#]>1&]}],n];
    Table[Sum[Length[phyfacs[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, v=concat(v, numbpart(n) + EulerT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Sep 18 2018

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 18 2018