cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323630 Expansion of e.g.f. exp(log(1 - x)^2/2)/(1 - x). This is also the transform of the involution numbers given by the signless Stirling cycle numbers.

Original entry on oeis.org

1, 1, 3, 12, 62, 390, 2884, 24472, 234086, 2490030, 29139306, 371878056, 5138306700, 76398336924, 1215973642584, 20624305367520, 371309259462972, 7071037633297116, 141997246553420052, 2998654325698019280, 66426777891686458728, 1540117294435707244488, 37296711627004301923056
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(exp(log(1-x)^2/2)/(1-x),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 28 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Abs[StirlingS1[n, k]] HypergeometricU[-k/2, 1/2, -1/2]/(-1/2)^(k/2), {k, 0, n}], {n, 0, 22}]
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(exp(log(1 - x)^2/2)/(1 - x))) \\ Michel Marcus, Jan 24 2019

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A000085(k).
From Emanuele Munarini, Jul 09 2022: (Start)
a(n) = Sum_{k=0..n/2} |Stirling1(n+1,2*k+1)|*binomial(2*k,k)*k!/2^k.
a(n+1) = (n+1)*a(n) - Sum_{k=1..n} binomial(n,k)*(k-1)!*a(n-k). (End)
Showing 1-1 of 1 results.