cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319508 a(n) = n! * [x^n] 1/(1 + n - exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 23, 1836, 361754, 143195025, 99986786773, 112625837135056, 191736660977760804, 469456525723134676365, 1589874326596159958849175, 7216642860485686755145923828, 42781019992428263086709058587150, 324097110833947198922869762652717041
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
  • PARI
    default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1+n-exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
    for(n=0, 15, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018

Formula

a(n) = n! * [x^n] 1/(1 + n - exp(x) - exp(2*x) - exp(3*x) - ... - exp(n*x)).
a(n) ~ sqrt(2*Pi) * n^(3*n + 1/2) / (2^n * exp(n - 5/3)). - Vaclav Kotesovec, Oct 09 2018