A319509
a(n) = n! * [x^n] 1/(1 - n + exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).
Original entry on oeis.org
1, -1, 13, -828, 145046, -53306325, 35351663831, -38335940184976, 63385171527442332, -151639317344211911505, 503956292395339783686325, -2252032996384696958326480356, 13175456854397460097168816336930, -98695402553214372025148083384255381
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 - n + Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
-
default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1-n+exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
for(n=0, 25, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018
A320253
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k - Sum_{j=1..k} exp(j*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 23, 13, 0, 1, 10, 86, 261, 75, 0, 1, 15, 230, 1836, 3947, 541, 0, 1, 21, 505, 7900, 52250, 74613, 4683, 0, 1, 28, 973, 25425, 361754, 1858716, 1692563, 47293, 0, 1, 36, 1708, 67473, 1706629, 20706700, 79345346, 44794221, 545835, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (1/2)*k*(k + 1)*x/1! + (1/6)*k*(3*k^3 + 8*k^2 + 6*k + 1)*x^2/2! + (1/4)*k^2*(k + 1)^2*(3*k^2 + 7*k + 3)*x^3/3! + (1/30)*k*(45*k^7 + 270*k^6 + 635*k^5 + 741*k^4 + 440*k^3 + 115*k^2 + 5*k - 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 6, 10, 15, ...
0, 3, 23, 86, 230, 505, ...
0, 13, 261, 1836, 7900, 25425, ...
0, 75, 3947, 52250, 361754, 1706629, ...
0, 541, 74613, 1858716, 20706700, 143195025, ...
Columns k=0..10 give
A000007,
A000670,
A004700,
A004701,
A004702,
A004703,
A004704,
A004705,
A004706,
A004707,
A004708.
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k - Sum[Exp[i x], {i, 1, k}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, n! SeriesCoefficient[1/(1 + k - Exp[x] (Exp[k x] - 1)/(Exp[x] - 1)), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
A320288
a(n) = n! * [x^n] exp(exp(x)*(exp(n*x) - 1)/(exp(x) - 1) - n).
Original entry on oeis.org
1, 1, 14, 504, 35054, 4004100, 680823583, 161337142848, 50830272555828, 20549783554154775, 10370522690234157175, 6390016526512315766520, 4721172172018812127424546, 4119920939845363203406535407, 4192465334819134111336349480680, 4920767556196547768620408273728000
Offset: 0
-
Table[n! SeriesCoefficient[Exp[Exp[x] (Exp[n x] - 1)/(Exp[x] - 1) - n], {x, 0, n}], {n, 0, 15}]
-
a(n)={my(A=O(x^(n+2))); n!*polcoef((exp(exp(x + A)*(exp(n*x + A) - 1)/(exp(x + A) - 1) - n)), n)}; \\ Andrew Howroyd, Nov 04 2018
A331340
a(n) = n! * [x^n] 1 / (1 + Sum_{k=1..n} log(1 - k*x)).
Original entry on oeis.org
1, 1, 23, 1872, 371524, 147316050, 102823452318, 115685840003328, 196669439127051840, 480847207762313690400, 1626231663646322798946000, 7372321556702072183715972096, 43653032698484678876818157764224, 330351436922959495109028135649934640
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + Sum[Log[1 - k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
Table[n! SeriesCoefficient[1/(1 + Log[Sum[StirlingS1[n + 1, n - k + 1] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]
A331341
a(n) = n! * [x^n] 1 / (1 - Sum_{k=1..n} log(1 + k*x)).
Original entry on oeis.org
1, 1, 13, 864, 151276, 55463850, 36662614458, 39635566403328, 65354864056231104, 155978053040893370400, 517297066212058929642000, 2307448887344816064221408256, 13478142770116878179295616074624, 100820731073923375628659569173854704
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 - Sum[Log[1 + k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
Table[n! SeriesCoefficient[1/(1 - Log[Sum[Abs[StirlingS1[n + 1, n - k + 1]] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]
A355428
a(n) = n! * [x^n] 1/(1 - Sum_{k=1..n} (exp(k*x) - 1)/k).
Original entry on oeis.org
1, 1, 11, 284, 13564, 1037479, 116171621, 17916010524, 3640962169776, 942959405612913, 303168464105203113, 118474395231479349050, 55306932183983923942940, 30397993745996492901617435, 19429788681469866219869997285
Offset: 0
-
Table[n! * SeriesCoefficient[1/(1 + HarmonicNumber[n] + E^((n + 1)*x) * LerchPhi[E^x, 1, n + 1] + Log[1 - E^x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 02 2022 *)
-
a(n) = n!*polcoef(1/(1-sum(k=1, n, (exp(k*x+x*O(x^n))-1)/k)), n);
A331582
a(n) = n! * [x^n] exp(n - exp(x) * (exp(n*x) - 1) / (exp(x) - 1)).
Original entry on oeis.org
1, -1, 4, 0, -1654, 102750, -4079389, -178722208, 83191059372, -14561829897345, 1115121827539325, 403631463559529040, -251989999508801085674, 76158421344845152140737, -3994730250899559184766830, -13162858116922635098226480000, 10823217968258750568539067678392
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)], {x, 0, n}], {n, 0, 16}]
b[n_, k_] := b[n, k] = If[n == 0, 1, -Sum[Binomial[n - 1, j - 1] Sum[i^j, {i, 1, k}] b[n - j, k], {j, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 16}]
Showing 1-7 of 7 results.