A319508
a(n) = n! * [x^n] 1/(1 + n - exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).
Original entry on oeis.org
1, 1, 23, 1836, 361754, 143195025, 99986786773, 112625837135056, 191736660977760804, 469456525723134676365, 1589874326596159958849175, 7216642860485686755145923828, 42781019992428263086709058587150, 324097110833947198922869762652717041
Offset: 0
Cf.
A000670,
A004700,
A004701,
A004702,
A004703,
A004704,
A004705,
A004706,
A004707,
A004708,
A319509.
-
Table[n! SeriesCoefficient[1/(1 + n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
-
default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1+n-exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
for(n=0, 15, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018
A004700
Expansion of e.g.f. 1/(3 - exp(x) - exp(2*x)).
Original entry on oeis.org
1, 3, 23, 261, 3947, 74613, 1692563, 44794221, 1354849547, 46101247173, 1742977452803, 72487571292381, 3288697207653947, 161639067567489333, 8555659001848069043, 485203383272476257741, 29350999686572204663147, 1886474390059466622333093
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(3-Exp(x)-Exp(2*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
seq(coeff(series(factorial(n)*(3-exp(x)-exp(2*x))^(-1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 10 2018
-
With[{nn=20},CoefficientList[Series[1/(3-Exp[x]-Exp[2x]),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Dec 04 2011 *)
-
x='x+O('x^30); Vec(serlaplace(1/(3-sum(k=1,2, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004701
Expansion of e.g.f. 1/(4 - exp(x) - exp(2*x) - exp(3*x)).
Original entry on oeis.org
1, 6, 86, 1836, 52250, 1858716, 79345346, 3951633636, 224917803770, 14402023566156, 1024662142371506, 80191908540219636, 6846505625682597290, 633241684193651067996, 63074628985206471485666, 6731364953866743063784836
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(4-Exp(x)-Exp(2*x)-Exp(3*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
seq(coeff(series(factorial(n)*(4-exp(x)-exp(2*x)-exp(3*x))^(-1),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 10 2018
-
With[{nn=20},CoefficientList[Series[1/(4-Exp[x]-Exp[2*x]-Exp[3*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(4-sum(k=1,3, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004702
Expansion of e.g.f. 1/(5 - exp(x) - exp(2*x) - exp(3*x) - exp(4*x)).
Original entry on oeis.org
1, 10, 230, 7900, 361754, 20706700, 1422295490, 113976565300, 10438383399674, 1075482742196860, 123120717545481650, 15504276864309866500, 2129906079562267271594, 316979734672375940684620, 50802750419531400066083810
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(5-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
seq(coeff(series(factorial(n)*(5-exp(x)-exp(2*x)-exp(3*x)-exp(4*x))^(-1),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 10 2018
-
With[{nn=20},CoefficientList[Series[1/(5-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(5-sum(k=1,4, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004703
Expansion of e.g.f. 1/(6-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)).
Original entry on oeis.org
1, 15, 505, 25425, 1706629, 143195025, 14417768365, 1693616001225, 227365098508549, 34338804652192545, 5762408433135346525, 1063691250037869293625, 214198140845740727508469, 46728077502266943919186065
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(6-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
With[{nn=20},CoefficientList[Series[1/(6-Exp[x]-Exp[2*x]-Exp[3*x] -Exp[4*x]-Exp[5*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(6-sum(k=1,5, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004704
Expansion of e.g.f. 1/(7- Sum_{k=1..6} exp(k*x)).
Original entry on oeis.org
1, 21, 973, 67473, 6238309, 720964881, 99986786773, 16177741934193, 2991473373828709, 622307309978695761, 143840821212045590773, 36572284571798550251313, 10144031468802588684994309, 3048113900510603294243693841
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(7-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
With[{nn=20},CoefficientList[Series[1/(7-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(7-sum(k=1,6, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004705
Expansion of e.g.f. 1/(8 - Sum_{k=1..7} exp(k*x)).
Original entry on oeis.org
1, 28, 1708, 156016, 19000996, 2892636208, 528436162708, 112625837135056, 27433137537640996, 7517361789179684848, 2288826715171726889908, 766572192067000875962896, 280079787805796188648857796, 110859415083883527695265783088
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(8-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
With[{nn=200},CoefficientList[Series[1/(8-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]-Exp[7*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 15 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(8-sum(k=1,7, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A004706
Expansion of e.g.f. 1/(9 - Sum_{k=1..8} exp(k*x)).
Original entry on oeis.org
1, 36, 2796, 325296, 50460324, 9784339056, 2276639188116, 618021679767696, 191736660977760804, 66920493102763469616, 25951985825417984806836, 11070691364651231290738896, 5151900329218737241490290884
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(9-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
-
With[{nn=20},CoefficientList[Series[1/(9-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]-Exp[7*x]-Exp[8*x]),{x,0,nn}],x] Range[0,nn]!] (* Vincenzo Librandi, Jun 15 2012 *)
-
x='x+O('x^30); Vec(serlaplace(1/(9-sum(k=1,8, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
A355427
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - Sum_{j=1..k} (exp(j*x) - 1)/j).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 11, 13, 0, 1, 4, 24, 89, 75, 0, 1, 5, 42, 284, 959, 541, 0, 1, 6, 65, 654, 4476, 12917, 4683, 0, 1, 7, 93, 1255, 13564, 88178, 208781, 47293, 0, 1, 8, 126, 2143, 32275, 351634, 2084564, 3937019, 545835, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 11, 24, 42, 65, ...
0, 13, 89, 284, 654, 1255, ...
0, 75, 959, 4476, 13564, 32275, ...
0, 541, 12917, 88178, 351634, 1037479, ...
A355423
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} (exp(j*x) - 1)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 6, 14, 5, 0, 1, 10, 50, 81, 15, 0, 1, 15, 130, 504, 551, 52, 0, 1, 21, 280, 2000, 5870, 4266, 203, 0, 1, 28, 532, 6075, 35054, 76872, 36803, 877, 0, 1, 36, 924, 15435, 148429, 684000, 1111646, 348543, 4140, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 14, 50, 130, 280, ...
0, 5, 81, 504, 2000, 6075, ...
0, 15, 551, 5870, 35054, 148429, ...
0, 52, 4266, 76872, 684000, 4004100, ...
Showing 1-10 of 10 results.