cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A320253 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k - Sum_{j=1..k} exp(j*x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 23, 13, 0, 1, 10, 86, 261, 75, 0, 1, 15, 230, 1836, 3947, 541, 0, 1, 21, 505, 7900, 52250, 74613, 4683, 0, 1, 28, 973, 25425, 361754, 1858716, 1692563, 47293, 0, 1, 36, 1708, 67473, 1706629, 20706700, 79345346, 44794221, 545835, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (1/2)*k*(k + 1)*x/1! + (1/6)*k*(3*k^3 + 8*k^2 + 6*k + 1)*x^2/2! + (1/4)*k^2*(k + 1)^2*(3*k^2 + 7*k + 3)*x^3/3! + (1/30)*k*(45*k^7 + 270*k^6 + 635*k^5 + 741*k^4 + 440*k^3 + 115*k^2 + 5*k - 1)*x^4/4! + ...
Square array begins:
  1,    1,      1,        1,         1,          1,  ...
  0,    1,      3,        6,        10,         15,  ...
  0,    3,     23,       86,       230,        505,  ...
  0,   13,    261,     1836,      7900,      25425,  ...
  0,   75,   3947,    52250,    361754,    1706629,  ...
  0,  541,  74613,  1858716,  20706700,  143195025,  ...
		

Crossrefs

Main diagonal gives A319508.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 + k - Sum[Exp[i x], {i, 1, k}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, n! SeriesCoefficient[1/(1 + k - Exp[x] (Exp[k x] - 1)/(Exp[x] - 1)), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: 1/(1 + k - exp(x)*(exp(k*x) - 1)/(exp(x) - 1)).

A319508 a(n) = n! * [x^n] 1/(1 + n - exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 23, 1836, 361754, 143195025, 99986786773, 112625837135056, 191736660977760804, 469456525723134676365, 1589874326596159958849175, 7216642860485686755145923828, 42781019992428263086709058587150, 324097110833947198922869762652717041
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
  • PARI
    default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1+n-exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
    for(n=0, 15, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018

Formula

a(n) = n! * [x^n] 1/(1 + n - exp(x) - exp(2*x) - exp(3*x) - ... - exp(n*x)).
a(n) ~ sqrt(2*Pi) * n^(3*n + 1/2) / (2^n * exp(n - 5/3)). - Vaclav Kotesovec, Oct 09 2018

A366299 Expansion of e.g.f. 1 / (-3 + Sum_{k=1..4} exp(-k*x)).

Original entry on oeis.org

1, 10, 170, 4300, 145046, 6115900, 309453710, 18267444100, 1232400398966, 93535914320620, 7887919177776350, 731710341934820500, 74046493229735962886, 8117679564133907097340, 958393800813241073719790, 121232569802975799394430500, 16357741845227058108680934806, 2345072789674603792983906178060
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[1/(-3 + Sum[Exp[-k x], {k, 1, 4}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + 3^k + 4^k) * a(n-k).

A355422 Expansion of e.g.f. exp(Sum_{k=1..4} (exp(k*x) - 1)).

Original entry on oeis.org

1, 10, 130, 2000, 35054, 684000, 14628190, 338990000, 8438270014, 224070580800, 6311530677150, 187702155610000, 5870416574854974, 192423935736656800, 6591135679171866910, 235315671951948070000, 8736534653549465359934
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Crossrefs

Column k=4 of A355423.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, 4, exp(k*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^j+3^j+4^j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k + 3^k + 4^k) * binomial(n-1,k-1) * a(n-k).
Showing 1-4 of 4 results.