cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A320253 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k - Sum_{j=1..k} exp(j*x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 23, 13, 0, 1, 10, 86, 261, 75, 0, 1, 15, 230, 1836, 3947, 541, 0, 1, 21, 505, 7900, 52250, 74613, 4683, 0, 1, 28, 973, 25425, 361754, 1858716, 1692563, 47293, 0, 1, 36, 1708, 67473, 1706629, 20706700, 79345346, 44794221, 545835, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (1/2)*k*(k + 1)*x/1! + (1/6)*k*(3*k^3 + 8*k^2 + 6*k + 1)*x^2/2! + (1/4)*k^2*(k + 1)^2*(3*k^2 + 7*k + 3)*x^3/3! + (1/30)*k*(45*k^7 + 270*k^6 + 635*k^5 + 741*k^4 + 440*k^3 + 115*k^2 + 5*k - 1)*x^4/4! + ...
Square array begins:
  1,    1,      1,        1,         1,          1,  ...
  0,    1,      3,        6,        10,         15,  ...
  0,    3,     23,       86,       230,        505,  ...
  0,   13,    261,     1836,      7900,      25425,  ...
  0,   75,   3947,    52250,    361754,    1706629,  ...
  0,  541,  74613,  1858716,  20706700,  143195025,  ...
		

Crossrefs

Main diagonal gives A319508.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 + k - Sum[Exp[i x], {i, 1, k}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, n! SeriesCoefficient[1/(1 + k - Exp[x] (Exp[k x] - 1)/(Exp[x] - 1)), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: 1/(1 + k - exp(x)*(exp(k*x) - 1)/(exp(x) - 1)).

A319508 a(n) = n! * [x^n] 1/(1 + n - exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 23, 1836, 361754, 143195025, 99986786773, 112625837135056, 191736660977760804, 469456525723134676365, 1589874326596159958849175, 7216642860485686755145923828, 42781019992428263086709058587150, 324097110833947198922869762652717041
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
  • PARI
    default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1+n-exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
    for(n=0, 15, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018

Formula

a(n) = n! * [x^n] 1/(1 + n - exp(x) - exp(2*x) - exp(3*x) - ... - exp(n*x)).
a(n) ~ sqrt(2*Pi) * n^(3*n + 1/2) / (2^n * exp(n - 5/3)). - Vaclav Kotesovec, Oct 09 2018

A355410 Expansion of e.g.f. 1/(3 - exp(x) - exp(3*x)).

Original entry on oeis.org

1, 4, 42, 652, 13482, 348484, 10809282, 391162972, 16177467642, 752689508404, 38911563009522, 2212759299753292, 137270821971529002, 9225382887659221924, 667690580181890112162, 51776098497454677943612, 4282645413209764715753562
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Crossrefs

Programs

  • Maple
    A355410 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            add((3^k + 1) * binomial(n,k) * procname(n-k),k=1..n) ;
        end if;
    end proc:
    seq(A355410(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(3-exp(x)-exp(3*x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j+1)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (3^k + 1) * binomial(n,k) * a(n-k).
a(n) ~ n! / ((9 - 2*r) * log(r)^(n+1)), where r = -2*sinh(log((-9*sqrt(3) + sqrt(247))/2)/3)/sqrt(3). - Vaclav Kotesovec, Jul 01 2022

A355425 Expansion of e.g.f. 1/(1 - Sum_{k=1..2} (exp(k*x) - 1)/k).

Original entry on oeis.org

1, 2, 11, 89, 959, 12917, 208781, 3937019, 84846899, 2057107337, 55416031601, 1642126375199, 53084324076839, 1859037341680157, 70112365228588421, 2833115932639555379, 122113252334984094779, 5592296493425013663377, 271169701559687033317241
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Crossrefs

Column k=2 of A355427.
Cf. A004700.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, 2, (exp(k*x)-1)/k))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^(j-1))*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^(k-1)) * binomial(n,k) * a(n-k).

A368013 Expansion of e.g.f. 1/(1 - exp(x) + exp(2*x)).

Original entry on oeis.org

1, -1, -1, 5, 11, -91, -301, 3485, 15371, -228811, -1261501, 22951565, 151846331, -3264973531, -25201039501, 625232757245, 5515342166891, -155079142742251, -1538993024478301, 48364005482108525, 533289474412481051, -18523127502677822971
Offset: 0

Views

Author

Seiichi Manyama, Dec 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1-2^j)*binomial(i, j)*v[i-j+1])); v;
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1 - exp(x) + exp(2*x)))) \\ Joerg Arndt, Feb 10 2025

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (1 - 2^k) * binomial(n,k) * a(n-k).
Showing 1-5 of 5 results.