cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A319508 a(n) = n! * [x^n] 1/(1 + n - exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 23, 1836, 361754, 143195025, 99986786773, 112625837135056, 191736660977760804, 469456525723134676365, 1589874326596159958849175, 7216642860485686755145923828, 42781019992428263086709058587150, 324097110833947198922869762652717041
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
  • PARI
    default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1+n-exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
    for(n=0, 15, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018

Formula

a(n) = n! * [x^n] 1/(1 + n - exp(x) - exp(2*x) - exp(3*x) - ... - exp(n*x)).
a(n) ~ sqrt(2*Pi) * n^(3*n + 1/2) / (2^n * exp(n - 5/3)). - Vaclav Kotesovec, Oct 09 2018

A366298 Expansion of e.g.f. 1 / (-2 + Sum_{k=1..3} exp(-k*x)).

Original entry on oeis.org

1, 6, 58, 828, 15766, 375276, 10719118, 357202068, 13603819126, 582854637276, 27747071520478, 1453003753611108, 83005119616449286, 5136947527401250476, 342365553703113120238, 24447711909762202272948, 1862151878019906517540246, 150702660087903415402794876, 12913688931657425188926182398
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(-2 + Sum[Exp[-k x], {k, 1, 3}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + 3^k) * a(n-k).

A366299 Expansion of e.g.f. 1 / (-3 + Sum_{k=1..4} exp(-k*x)).

Original entry on oeis.org

1, 10, 170, 4300, 145046, 6115900, 309453710, 18267444100, 1232400398966, 93535914320620, 7887919177776350, 731710341934820500, 74046493229735962886, 8117679564133907097340, 958393800813241073719790, 121232569802975799394430500, 16357741845227058108680934806, 2345072789674603792983906178060
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[1/(-3 + Sum[Exp[-k x], {k, 1, 4}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + 3^k + 4^k) * a(n-k).

A366300 Expansion of e.g.f. 1 / (-4 + Sum_{k=1..5} exp(-k*x)).

Original entry on oeis.org

1, 15, 395, 15525, 813671, 53306325, 4190730335, 384368222925, 40289992211591, 4751157347330085, 622528350091484975, 89724601853904952125, 14107579506569655343511, 2403010007367884873188245, 440801776092151383251034815, 86635186648455606881413582125, 18162432724968339044562784395431
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/(-4 + Sum[Exp[-k x], {k, 1, 5}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 5^k) * a(n-k).

A366301 Expansion of e.g.f. 1 / (-5 + Sum_{k=1..6} exp(-k*x)).

Original entry on oeis.org

1, 21, 791, 44541, 3344327, 313883661, 35351663831, 4645129190541, 697553757742247, 117844709608925901, 22120757207544654071, 4567542244067740041741, 1028853921587420129556167, 251065459281889114259025741, 65978874409961267115296383511, 18577448234544937135538443584141
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[1/(-5 + Sum[Exp[-k x], {k, 1, 6}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 6^k) * a(n-k).

A366302 Expansion of e.g.f. 1 / (-6 + Sum_{k=1..7} exp(-k*x)).

Original entry on oeis.org

1, 28, 1428, 108976, 11088924, 1410452848, 215282610348, 38335940184976, 7801807561068444, 1786227911508713008, 454397569178386774668, 127153351764004535348176, 38815768300684586111354364, 12836619471891836987050169968, 4571701128215207034965181098988, 1744488930796462320024115801858576
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[1/(-6 + Sum[Exp[-k x], {k, 1, 7}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k + 7^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 7^k) * a(n-k).

A331340 a(n) = n! * [x^n] 1 / (1 + Sum_{k=1..n} log(1 - k*x)).

Original entry on oeis.org

1, 1, 23, 1872, 371524, 147316050, 102823452318, 115685840003328, 196669439127051840, 480847207762313690400, 1626231663646322798946000, 7372321556702072183715972096, 43653032698484678876818157764224, 330351436922959495109028135649934640
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + Sum[Log[1 - k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
    Table[n! SeriesCoefficient[1/(1 + Log[Sum[StirlingS1[n + 1, n - k + 1] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]

Formula

a(n) = n! * [x^n] 1 / (1 + log(Sum_{k=0..n} Stirling1(n+1,n-k+1) * x^k)).
a(n) ~ sqrt(Pi) * n^(3*n + 1/2) / (2^(n - 1/2) * exp(n - 5/3)). - Vaclav Kotesovec, Jan 28 2020

A331341 a(n) = n! * [x^n] 1 / (1 - Sum_{k=1..n} log(1 + k*x)).

Original entry on oeis.org

1, 1, 13, 864, 151276, 55463850, 36662614458, 39635566403328, 65354864056231104, 155978053040893370400, 517297066212058929642000, 2307448887344816064221408256, 13478142770116878179295616074624, 100820731073923375628659569173854704
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - Sum[Log[1 + k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
    Table[n! SeriesCoefficient[1/(1 - Log[Sum[Abs[StirlingS1[n + 1, n - k + 1]] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]

Formula

a(n) = n! * [x^n] 1 / (1 - log(Sum_{k=0..n} |Stirling1(n+1,n-k+1)| * x^k)).
a(n) ~ sqrt(Pi) * n^(3*n + 1/2) / (2^(n - 1/2) * exp(n - 1/3)). - Vaclav Kotesovec, Jan 28 2020

A331582 a(n) = n! * [x^n] exp(n - exp(x) * (exp(n*x) - 1) / (exp(x) - 1)).

Original entry on oeis.org

1, -1, 4, 0, -1654, 102750, -4079389, -178722208, 83191059372, -14561829897345, 1115121827539325, 403631463559529040, -251989999508801085674, 76158421344845152140737, -3994730250899559184766830, -13162858116922635098226480000, 10823217968258750568539067678392
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n - Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)], {x, 0, n}], {n, 0, 16}]
    b[n_, k_] := b[n, k] = If[n == 0, 1, -Sum[Binomial[n - 1, j - 1] Sum[i^j, {i, 1, k}] b[n - j, k], {j, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 16}]

Formula

a(n) = n! * [x^n] exp(n - exp(x) - exp(2*x) - exp(3*x) - ... - exp(n*x)).
Showing 1-9 of 9 results.