cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319539 Array read by antidiagonals: T(n,k) is the number of binary rooted trees with n leaves of k colors and all non-leaf nodes having out-degree 2.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 6, 2, 5, 10, 18, 18, 3, 6, 15, 40, 75, 54, 6, 7, 21, 75, 215, 333, 183, 11, 8, 28, 126, 495, 1260, 1620, 636, 23, 9, 36, 196, 987, 3600, 8010, 8208, 2316, 46, 10, 45, 288, 1778, 8568, 28275, 53240, 43188, 8610, 98, 11, 55, 405, 2970, 17934, 80136, 232500, 366680, 232947, 32763, 207
Offset: 1

Views

Author

Andrew Howroyd, Sep 22 2018

Keywords

Comments

Not all k colors need to be used. The total number of nodes will be 2n-1.
See table 2.1 in the Johnson reference.

Examples

			Array begins:
===========================================================
n\k|  1    2      3       4        5        6         7
---+-------------------------------------------------------
1  |  1    2      3       4        5        6         7 ...
2  |  1    3      6      10       15       21        28 ...
3  |  1    6     18      40       75      126       196 ...
4  |  2   18     75     215      495      987      1778 ...
5  |  3   54    333    1260     3600     8568     17934 ...
6  |  6  183   1620    8010    28275    80136    194628 ...
7  | 11  636   8208   53240   232500   785106   2213036 ...
8  | 23 2316  43188  366680  1979385  7960638  26037431 ...
9  | 46 8610 232947 2590420 17287050 82804806 314260765 ...
...
		

Crossrefs

Columns 1..5 are A001190, A083563, A220816, A220817, A220818.
Main diagonal is A319580.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, k*n, If[OddQ[n], 0, (#*(1-#)/2&)[A[n/2, k]]] + Sum[A[i, k]*A[n-i, k], {i, 1, n/2}]];
    Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) gives k-th column as a vector.
    R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    {my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))}

Formula

T(1,k) = k.
T(n,k) = (1/2)*([n mod 2 == 0]*T(n/2,k) + Sum_{j=1..n-1} T(j,k)*T(n-j,k)).
G.f. of k-th column R(x) satisfies R(k) = k*x + (R(x)^2 + R(x^2))/2.