cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319541 Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 2, 14, 27, 15, 3, 48, 180, 240, 105, 6, 171, 1089, 2604, 2625, 945, 11, 614, 6333, 24180, 42075, 34020, 10395, 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135, 46, 8518, 207255, 1710108, 6578550, 13408740, 14963130, 8648640, 2027025
Offset: 1

Views

Author

Andrew Howroyd, Sep 22 2018

Keywords

Comments

See table 2.2 in the Johnson reference.

Examples

			Triangle begins:
   1;
   1,    1;
   1,    4,     3;
   2,   14,    27,     15;
   3,   48,   180,    240,    105;
   6,  171,  1089,   2604,   2625,    945;
  11,  614,  6333,  24180,  42075,  34020,  10395;
  23, 2270, 36309, 207732, 554820, 755370, 509355, 135135;
  ...
		

Crossrefs

Columns 1..5 are A001190, A220819, A220820, A220821, A220822.
Main diagonal is A001147.
Row sums give A319590.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
        end:
    T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];
    T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is k-th column of A319539 as a vector.
    R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319539(n,i).