A319541 Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.
1, 1, 1, 1, 4, 3, 2, 14, 27, 15, 3, 48, 180, 240, 105, 6, 171, 1089, 2604, 2625, 945, 11, 614, 6333, 24180, 42075, 34020, 10395, 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135, 46, 8518, 207255, 1710108, 6578550, 13408740, 14963130, 8648640, 2027025
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 4, 3; 2, 14, 27, 15; 3, 48, 180, 240, 105; 6, 171, 1089, 2604, 2625, 945; 11, 614, 6333, 24180, 42075, 34020, 10395; 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012.
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0, (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2)) end: T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k): seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Sep 23 2018
-
Mathematica
A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
-
PARI
\\ here R(n,k) is k-th column of A319539 as a vector. R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v} M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))} {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
Formula
T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319539(n,i).
Comments