A319543 a(n) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14*15 - ... + (up to n).
1, 2, 6, 2, -14, -114, -107, -58, 390, 380, 280, -930, -917, -748, 1800, 1784, 1528, -3096, -3077, -2716, 4884, 4862, 4378, -7260, -7235, -6610, 10290, 10262, 9478, -14070, -14039, -13078, 18666, 18632, 17476, -24174, -24137, -22768, 30660, 30620, 29020
Offset: 1
Examples
a(1) = 1; a(2) = 1*2 = 2; a(3) = 1*2*3 = 6; a(4) = 1*2*3 - 4 = 2; a(5) = 1*2*3 - 4*5 = -14; a(6) = 1*2*3 - 4*5*6 = -114; a(7) = 1*2*3 - 4*5*6 + 7 = -107; a(8) = 1*2*3 - 4*5*6 + 7*8 = -58; a(9) = 1*2*3 - 4*5*6 + 7*8*9 = 390; a(10) = 1*2*3 - 4*5*6 + 7*8*9 - 10 = 380; a(11) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11 = 280; a(12) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 = -930; a(13) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13 = -917; a(14) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14 = -748; a(15) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14*15 = 1800; etc.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,-4,4,0,-6,6,0,-4,4,0,-1,1).
Crossrefs
Programs
-
Maple
seq(coeff(series((x*(1+x+4*x^2-12*x^4-84*x^5-3*x^6-9*x^7+72*x^8-2*x^9+4*x^10-2*x^11))/((1-x)*(1+x)^4*(1-x+x^2)^4),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 01 2018
-
Mathematica
LinearRecurrence[{1, 0, -4, 4, 0, -6, 6, 0, -4, 4, 0, -1, 1},{1, 2, 6, 2, -14, -114, -107, -58, 390, 380, 280, -930, -917}, 40] (* Stefano Spezia, Sep 23 2018 *)
-
PARI
Vec(x*(1 + x + 4*x^2 - 12*x^4 - 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 - 2*x^9 + 4*x^10 - 2*x^11) / ((1 - x)*(1 + x)^4*(1 - x + x^2)^4) + O(x^40)) \\ Colin Barker, Sep 23 2018
Formula
a(n) = (-1)^floor(n/3) * Sum_{i=1..2} (1-sign((n-i) mod 3)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/3)+1) * (1-sign(i mod 3)) * (Product_{j=1..3} (i-j+1)).
From Colin Barker, Sep 23 2018: (Start)
G.f.: x*(1 + x + 4*x^2 - 12*x^4 - 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 - 2*x^9 + 4*x^10 - 2*x^11) / ((1 - x)*(1 + x)^4*(1 - x + x^2)^4).
a(n) = a(n-1) - 4*a(n-3) + 4*a(n-4) - 6*a(n-6) + 6*a(n-7) - 4*a(n-9) + 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)
Comments