A319545 a(n) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13*14*15 - ... + (up to n).
1, 2, 6, 24, 120, 114, 78, -216, -2904, -30120, -30109, -29988, -28404, -6096, 330240, 330224, 329968, 325344, 237216, -1530240, -1530219, -1529778, -1519614, -1275216, 4845360, 4845334, 4844658, 4825704, 4275336, -12255360, -12255329, -12254368, -12222624
Offset: 1
Examples
a(1) = 1; a(2) = 1*2 = 2; a(3) = 1*2*3 = 6; a(4) = 1*2*3*4 = 24; a(5) = 1*2*3*4*5 = 120; a(6) = 1*2*3*4*5 - 6 = 114; a(7) = 1*2*3*4*5 - 6*7 = 78; a(8) = 1*2*3*4*5 - 6*7*8 = -216; a(9) = 1*2*3*4*5 - 6*7*8*9 = -2904; a(10) = 1*2*3*4*5 - 6*7*8*9*10 = -30120; a(11) = 1*2*3*4*5 - 6*7*8*9*10 + 11 = -30109; a(12) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12 = -29988; a(13) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13 = -28404; a(14) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13*14 = -6096; a(15) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13*14*15 = 330240; a(16) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13*14*15 - 16 = 330224; a(17) = 1*2*3*4*5 - 6*7*8*9*10 + 11*12*13*14*15 - 16*17 = 329968; etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
a[n_]:=(-1)^Floor[n/5]*Sum[(1-Sign[Mod[n-i,5]])*Product[n-j+1,{j,1,i}],{i,1,4}]+Sum[(-1)^(Floor[i/5]+1)*(1-Sign[Mod[i,5]])*Product[i-j+1,{j,1,4}],{i,1,n}]; Array[a, 30] (* Stefano Spezia, Sep 23 2018 *) Table[Total[Times@@@Partition[Riffle[Times@@@Partition[Range[n],UpTo[5]],{1,-1},{2,-1,2}],2]],{n,40}] (* Harvey P. Dale, Mar 30 2023 *)
Formula
a(n) = (-1)^floor(n/5) * Sum_{i=1..4} (1-sign((n-i) mod 5)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/5)+1) * (1-sign(i mod 5)) * (Product_{j=1..5} (i-j+1)).
Comments