A319549 a(n) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13*14*15*16 + 17*18*19*20*21*22*23*24 - ... + (up to n).
1, 2, 6, 24, 120, 720, 5040, 40320, 40311, 40230, 39330, 28440, -114120, -2121840, -32392080, -518878080, -518878063, -518877774, -518872266, -518761800, -516436200, -465156720, 716713200, 29135312640, 29135312615, 29135311990, 29135295090, 29134821240
Offset: 1
Examples
a(1) = 1; a(2) = 1*2 = 2; a(3) = 1*2*3 = 6; a(4) = 1*2*3*4 = 24; a(5) = 1*2*3*4*5 = 120; a(6) = 1*2*3*4*5*6 = 720; a(7) = 1*2*3*4*5*6*7 = 5040; a(8) = 1*2*3*4*5*6*7*8 = 40320; a(9) = 1*2*3*4*5*6*7*8 - 9 = 40311; a(10) = 1*2*3*4*5*6*7*8 - 9*10 = 40230; a(11) = 1*2*3*4*5*6*7*8 - 9*10*11 = 39330; a(12) = 1*2*3*4*5*6*7*8 - 9*10*11*12 = 28440; a(13) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13 = -114120; a(14) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13*14 = -2121840; a(15) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13*14*15 = -32392080; a(16) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13*14*15*16 = -518878080; a(17) = 1*2*3*4*5*6*7*8 - 9*10*11*12*13*14*15*16 + 17 = -518878063; etc.
Crossrefs
Programs
-
Mathematica
a[n_]:=(-1)^Floor[n/8]*Sum[(1-Sign[Mod[n-i,8]])*Product[n-j+1,{j,1,i}],{i,1,7}]+Sum[(-1)^(Floor[i/8]+1)*(1-Sign[Mod[i,8]])*Product[i-j+1,{j,1,7}],{i,1,n}]; Array[a, 30] (* Stefano Spezia, Sep 23 2018 *) Table[Total[Times@@@Partition[Riffle[Times@@@Partition[Range[n],UpTo[8]],{1,-1},{1,-1,2}],2]],{n,30}] (* Harvey P. Dale, Oct 05 2024 *)
Formula
a(n) = (-1)^floor(n/8) * Sum_{i=1..7} (1-sign((n-i) mod 8)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/8)+1) * (1-sign(i mod 8)) * (Product_{j=1..8} (i-j+1)).
Comments