A319556 a(n) gives the alternating sum of length n, starting at n: n - (n+1) + (n+2) - ... + (-1)^(n+1) * (2n-1).
1, -1, 4, -2, 7, -3, 10, -4, 13, -5, 16, -6, 19, -7, 22, -8, 25, -9, 28, -10, 31, -11, 34, -12, 37, -13, 40, -14, 43, -15, 46, -16, 49, -17, 52, -18, 55, -19, 58, -20, 61, -21, 64, -22, 67, -23, 70, -24, 73, -25, 76, -26, 79, -27, 82, -28, 85, -29, 88, -30
Offset: 1
Examples
If n=5, a(n)=7, since 5-6+7-8+9 = 7. If n=6, a(n)=-3, since 6-7+8-9+10-11 = -3.
Links
- Mark Povich, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Magma
[((2*n-1)*(n mod 2) - n*(-1)^n)/2: n in [0..70]]; // G. C. Greubel, Mar 14 2024
-
Mathematica
LinearRecurrence[{0,2,0,-1}, {1,-1,4,-2}, 60] (* Metin Sariyar, Sep 15 2019 *)
-
PARI
a(n) = sum(k=n, 2*n-1, (-1)^(n-k)*k); \\ Michel Marcus, Aug 27 2019
-
PARI
Vec(x*(1 - x + 2*x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60)) \\ Colin Barker, Sep 07 2019
-
Python
def alt(k): return sum(k[::2])-sum(k[1::2]) def alt_run(n): m = [] m.append(n) for i in range (1, n): m.append(m[0]+i) return alt(m) t=[] for i in range (100): t.append(alt_run(i)) print(t)
-
SageMath
[((2*n-1)*(n%2) - n*(-1)^n)/2 for n in range(1,71)] # G. C. Greubel, Mar 14 2024
Formula
From Bernard Schott, Aug 27 2019: (Start)
a(2*n-1) = 3*n-2 for n >= 1,
a(2*n) = - n for n >= 1. (End)
a(n) = Sum_{k=n..2*n-1} (-1)^(n-k)*k.
From Colin Barker, Sep 07 2019: (Start)
G.f.: x*(1 - x + 2*x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>4.
a(n) = ((2*n-1)*(1 - (-1)^n) - 2*n*(-1)^n)/4. (End)
E.g.f.: (1/4)*((1 + 4*x)*exp(-x) - (1 - 2*x)*exp(x)). - Stefano Spezia, Sep 07 2019 after Colin Barker
From G. C. Greubel, Mar 14 2024: (Start)
a(n) = Sum_{k=0..n-1} (-1)^k*A094727(n, k).
a(n) = Sum_{k=1..n} (-1)^(k-1)*A128622(n, k). (End)
Comments