cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 8, 8, 1, 10, 16, 15, 10, 1, 18, 38, 37, 21, 14, 1, 34, 100, 111, 63, 33, 16, 1, 66, 278, 373, 237, 113, 41, 20, 1, 130, 796, 1335, 999, 489, 163, 56, 23, 1, 258, 2318, 4957, 4461, 2393, 833, 248, 69, 27, 1, 514, 6820, 18831, 20583, 12513, 4795, 1418, 339, 87, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
   8,  15,   37,  111,   373,   1335,  ...
  10,  21,   63,  237,   999,   4461,  ...
  14,  33,  113,  489,  2393,  12513,  ...
		

Crossrefs

Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076.
Cf. A082771, A109974, A319194 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0)
    def A319649_gen(): # generator of terms
         return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A319649_list = list(islice(A319649_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} sigma_k(j).