A319673 Primes that are neither a twin prime nor a Sophie Germain or safe prime.
37, 67, 79, 97, 127, 157, 163, 211, 223, 257, 277, 307, 317, 331, 337, 353, 367, 373, 379, 389, 397, 401, 409, 439, 449, 457, 487, 499, 541, 547, 557, 577, 607, 613, 631, 647, 673, 677, 691, 701, 709, 727, 733, 739, 751, 757, 769, 773, 787, 797, 853, 877, 907, 919, 929, 937, 941, 947, 967, 971, 977, 991, 997
Offset: 1
Keywords
Examples
37 is prime, but it is not a twin prime (neither 35 nor 39 are prime), it is not a Sophie Germain prime (2*37 + 1 = 75 is not prime), and it is not a safe prime ((37 - 1)/2 = 18 is not prime). So 37 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
GAP
Filtered([1..1000],p->IsPrime(p) and not IsPrime(p-2) and not IsPrime(p+2) and not IsPrime(2*p+1) and not IsPrime((p-1)/2)); # Muniru A Asiru, Sep 27 2018
-
Magma
[p: p in PrimesUpTo(1000) | not IsPrime(p-2) and not IsPrime(p+2)and not IsPrime(2*p+1)and not IsPrime((p-1) div 2)]; // Vincenzo Librandi, Oct 25 2018
-
Maple
select(p->isprime(p) and not isprime(p-2) and not isprime(p+2) and not isprime(2*p+1) and not isprime((p-1)/2),[$1..1000]); # Muniru A Asiru, Sep 27 2018
-
Mathematica
Select[Prime@ Range@ PrimePi[10^3], NoneTrue[{# - 2, # + 2, 2 # + 1, (# - 1)/2}, PrimeQ] &] (* Michael De Vlieger, Sep 26 2018 *)
-
PARI
isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && !isprime(2*p+1) && !isprime((p-1)/2); \\ Michel Marcus, Sep 26 2018