cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319673 Primes that are neither a twin prime nor a Sophie Germain or safe prime.

Original entry on oeis.org

37, 67, 79, 97, 127, 157, 163, 211, 223, 257, 277, 307, 317, 331, 337, 353, 367, 373, 379, 389, 397, 401, 409, 439, 449, 457, 487, 499, 541, 547, 557, 577, 607, 613, 631, 647, 673, 677, 691, 701, 709, 727, 733, 739, 751, 757, 769, 773, 787, 797, 853, 877, 907, 919, 929, 937, 941, 947, 967, 971, 977, 991, 997
Offset: 1

Views

Author

Ralf Steiner, Sep 25 2018

Keywords

Examples

			37 is prime, but it is not a twin prime (neither 35 nor 39 are prime), it is not a Sophie Germain prime (2*37 + 1 = 75 is not prime), and it is not a safe prime ((37 - 1)/2 = 18 is not prime).  So 37 is in the sequence.
		

Crossrefs

Programs

  • GAP
    Filtered([1..1000],p->IsPrime(p) and not IsPrime(p-2) and not IsPrime(p+2) and not IsPrime(2*p+1) and not IsPrime((p-1)/2)); # Muniru A Asiru, Sep 27 2018
    
  • Magma
    [p: p in PrimesUpTo(1000) | not IsPrime(p-2) and not IsPrime(p+2)and not IsPrime(2*p+1)and not IsPrime((p-1) div 2)]; // Vincenzo Librandi, Oct 25 2018
  • Maple
    select(p->isprime(p) and not isprime(p-2) and not isprime(p+2) and not isprime(2*p+1) and not isprime((p-1)/2),[$1..1000]); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    Select[Prime@ Range@ PrimePi[10^3], NoneTrue[{# - 2, # + 2, 2 # + 1, (# - 1)/2}, PrimeQ] &] (* Michael De Vlieger, Sep 26 2018 *)
  • PARI
    isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && !isprime(2*p+1) && !isprime((p-1)/2); \\ Michel Marcus, Sep 26 2018
    

Formula