cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A323237 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291756(n) for all n, except f(1) = -1 and for odd numbers n > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 15, 3, 23, 3, 24, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 32, 3, 33, 3, 34, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 36, 3, 40, 3, 41, 3, 27, 3, 42, 3, 43, 3, 44, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3, 50, 3, 51, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j) => A319998(i) = A319998(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    Aux323237(n) = if(1==n,-1,if(n%2,0,(1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n))));
    v323237 = rgs_transform(vector(up_to, n, Aux323237(n)));
    A323237(n) = v323237[n];

A323238 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291750(n) for all n, except for odd numbers n > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 17, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 23, 3, 32, 3, 33, 3, 34, 3, 33, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 40, 3, 41, 3, 42, 3, 43, 3, 44, 3, 31, 3, 33, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A146076(i) = A146076(j),
a(i) = a(j) => A319697(i) = A319697(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323238(n) = if((n>1)&&(n%2),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
    v323238 = rgs_transform(vector(up_to, n, Aux323238(n)));
    A323238(n) = v323238[n];

A323241 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n<=2) = -n, f(n) = 0 if n is an odd number > 1, and f(n) = A300226(n) for even numbers >= 4.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 5, 3, 7, 3, 5, 3, 8, 3, 9, 3, 7, 3, 5, 3, 10, 3, 5, 3, 7, 3, 11, 3, 12, 3, 5, 3, 13, 3, 5, 3, 10, 3, 11, 3, 7, 3, 5, 3, 14, 3, 15, 3, 7, 3, 16, 3, 10, 3, 5, 3, 17, 3, 5, 3, 18, 3, 11, 3, 7, 3, 19, 3, 20, 3, 5, 3, 7, 3, 11, 3, 14, 3, 5, 3, 17, 3, 5, 3, 10, 3, 21, 3, 7, 3, 5, 3, 22, 3, 23, 3, 24, 3, 11, 3, 10, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j).
a(i) = a(j) => A183063(i) = A183063(j).

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
    A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1));
    A323241aux(n) = if(n<=2,-n,if(n%2,0,[A052126(n), A319988(n)]));
    v323241 = rgs_transform(vector(up_to,n,A323241aux(n)));
    A323241(n) = v323241[n];

A319702 Filter sequence for sequences that are constant for all even terms >= 2.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 2, 11, 2, 12, 2, 13, 2, 14, 2, 15, 2, 16, 2, 17, 2, 18, 2, 19, 2, 20, 2, 21, 2, 22, 2, 23, 2, 24, 2, 25, 2, 26, 2, 27, 2, 28, 2, 29, 2, 30, 2, 31, 2, 32, 2, 33, 2, 34, 2, 35, 2, 36, 2, 37, 2, 38, 2, 39, 2, 40, 2, 41, 2, 42, 2, 43, 2, 44, 2, 45, 2, 46, 2, 47, 2, 48, 2, 49, 2, 50, 2, 51, 2, 52, 2, 53, 2, 54, 2, 55, 2, 56, 2, 57, 2, 58, 2, 59, 2, 60, 2, 61, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Restricted growth sequence transform of A141310.
For n > 2, a(n-1) is the number of occurrences of n in A319840. - Stefano Spezia, Apr 07 2023

Crossrefs

Programs

  • PARI
    A319702(n) = if(n<=2, n, if(!(n%2), 2, (n+3)/2));

Formula

a(1) = 1, and for n > 1, if n is even, a(n) = 2, otherwise a(n) = (n+3)/2.
From Stefano Spezia, Apr 07 2023: (Start)
O.g.f.: x*(1 + 2*x + x^2 - 2*x^3 - x^4)/((1 - x)^2*(1 + x)^2).
E.g.f.: ((4 + x)*cosh(x) + 3*sinh(x) - 2*(2 + x))/2. (End)

A323235 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 0, f(n) = -1 if n is an odd number > 1, and f(n) = A323234(n) for even numbers >= 4.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 3, 5, 3, 6, 3, 7, 3, 2, 3, 5, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 2, 3, 5, 3, 8, 3, 9, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 25, 3, 2, 3, 5, 3, 8, 3, 9, 3, 14, 3, 15, 3, 16, 3, 17, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 32, 3, 33, 3, 34, 3, 35, 3, 36, 3, 37, 3, 38, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
A323234(i) = A323234(j) => a(i) = a(j).

Crossrefs

Cf. also A323241 (somewhat analogous filter sequence for prime factorization).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
    A053645(n) = (n-A053644(n));
    A079944off0(n) = (1==binary(2+n)[2]);
    A323235aux(n) = if(1==n,0,if(n%2,-1,[A053645(n), A079944off0(n-2)]));
    v323235 = rgs_transform(vector(up_to,n,A323235aux(n)));
    A323235(n) = v323235[n];

A323242 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n<=2) = -n, f(n) = 0 if n is an even number > 2, and f(n) = A300226(n) for odd numbers >= 3.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 6, 4, 3, 4, 3, 4, 6, 4, 3, 4, 7, 4, 8, 4, 3, 4, 3, 4, 6, 4, 9, 4, 3, 4, 6, 4, 3, 4, 3, 4, 10, 4, 3, 4, 11, 4, 6, 4, 3, 4, 9, 4, 6, 4, 3, 4, 3, 4, 10, 4, 9, 4, 3, 4, 6, 4, 3, 4, 3, 4, 12, 4, 13, 4, 3, 4, 14, 4, 3, 4, 9, 4, 6, 4, 3, 4, 13, 4, 6, 4, 9, 4, 3, 4, 10, 4, 3, 4, 3, 4, 15
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
    A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1));
    A323242aux(n) = if(n<=2,-n,if(!(n%2),0,[A052126(n), A319988(n)]));
    v323242 = rgs_transform(vector(up_to,n,A323242aux(n)));
    A323242(n) = v323242[n];

A328765 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A328763(n), except for odd numbers > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 3, 4, 5, 4, 6, 4, 7, 4, 6, 4, 8, 4, 9, 4, 10, 4, 10, 4, 11, 4, 10, 4, 12, 4, 7, 4, 5, 4, 9, 4, 9, 4, 6, 4, 10, 4, 13, 4, 10, 4, 10, 4, 14, 4, 12, 4, 12, 4, 15, 4, 12, 4, 16, 4, 13, 4, 6, 4, 8, 4, 14, 4, 10, 4, 10, 4, 17, 4, 12, 4, 12, 4, 18, 4, 12, 4, 19, 4, 20, 4, 21, 4, 19, 4, 17, 4, 10, 4, 12, 4, 14, 4, 12, 4, 12, 4, 22, 4, 12, 4
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A328578(i) = A328578(j).

Crossrefs

Programs

  • PARI
    up_to = 32768;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328613(n) = { my(m=1, p=2); while(n, m *= p^valuation(n,p); n = n\p; p = nextprime(1+p)); (m*p); };
    A328763(n) = A328613(A276086(n));
    Aux328765(n) = if((n>1)&&(n%2),0,A328763(n));
    v328765 = rgs_transform(vector(1+up_to, n, Aux328765(n-1)));
    A328765(n) = v328765[1+n];
Showing 1-8 of 8 results.