cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020