A319749 a(n) is the numerator of the Heron sequence with h(0)=3.
3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0
Examples
A078370(2)=29. hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727; hn(3)=A041046(13)=528527.
Links
- P. Liardet and P. Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
- Wikipedia, Engel Expansion
- Wikipedia, Methods of computing square roots
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Crossrefs
Programs
-
Maple
hn[0]:=3: hd[0]:=1: for n from 1 to 6 do hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2: hd[n]:=hn[n-1]*hd[n-1]: printf("%5d%40d%40d\n", n, hn[n], hd[n]): end do: #alternative program a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if: seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
-
Python
def aupton(nn): hn, hd, alst = 3, 1, [3] for n in range(nn): hn, hd = (hn**2 + 13*hd**2)//2, hn*hd alst.append(hn) return alst print(aupton(7)) # Michael S. Branicky, Mar 16 2022
Formula
h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)
Extensions
a(6) and a(7) added by Peter Bala, Mar 16 2022
Comments