A319860 Expansion of Product_{k>0} (1 - 2*k*x^(2*k))/(1 + (2*k-1)*x^(2*k-1)).
1, -1, -1, -2, -2, 3, 8, 7, -6, -2, 12, 10, -9, -10, -98, -171, 12, 224, 178, 300, 30, -992, -547, 1612, 1950, -290, -2859, -4532, -878, 13260, 23998, -6100, -51628, -56630, -24790, 65573, 217178, 103912, -278804, -418582, 25319, 698460, 1300830, 252430, -3165500
Offset: 0
Keywords
Programs
-
Maple
seq(coeff(series(mul((1-2*k*x^(2*k))/(1+(2*k-1)*x^(2*k-1)),k=1..n),x,n+1), x, n), n = 0 .. 45); # Muniru A Asiru, Sep 29 2018
-
PARI
N=99; x='x+O('x^N); Vec(prod(k=1, N, (1-(2*k)*x^(2*k))/(1+(2*k-1)*x^(2*k-1))))
Formula
Convolution inverse of A319859.