A319871 a(n) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + ... + (up to the n-th term).
7, 42, 210, 840, 2520, 5040, 5040, 5054, 5222, 7224, 29064, 245280, 2167200, 17302320, 17302341, 17302740, 17310300, 17445960, 19744200, 56372400, 603353520, 603353548, 603354276, 603373176, 603844920, 615147120, 874606320, 6570915120, 6570915155, 6570916310
Offset: 1
Examples
a(1) = 7; a(2) = 7*6 = 42; a(3) = 7*6*5 = 210; a(4) = 7*6*5*4 = 840; a(5) = 7*6*5*4*3 = 2520; a(6) = 7*6*5*4*3*2 = 5040; a(7) = 7*6*5*4*3*2*1 = 5040; a(8) = 7*6*5*4*3*2*1 + 14 = 5054; a(9) = 7*6*5*4*3*2*1 + 14*13 = 5222; a(10) = 7*6*5*4*3*2*1 + 14*13*12 = 7224; a(11) = 7*6*5*4*3*2*1 + 14*13*12*11 = 29064; a(12) = 7*6*5*4*3*2*1 + 14*13*12*11*10 = 245280; a(13) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9 = 2167200; a(14) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 = 17302320; a(15) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21 = 17302341; a(16) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21*20 = 17302740; a(17) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21*20*19 = 17310300; a(18) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21*20*19*18 = 17445960; a(19) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21*20*19*18*17 = 19744200; a(20) = 7*6*5*4*3*2*1 + 14*13*12*11*10*9*8 + 21*20*19*18*17*16 = 56372400; etc.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,7),n=1..30); # Muniru A Asiru, Sep 30 2018
-
Mathematica
k:=7; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])*Product[n-i-j+k+1, {i,1,j }] , {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])*Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
Comments