cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319874 a(n) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13*12*11 + ... + (up to the n-th term).

Original entry on oeis.org

10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800, 3628820, 3629180, 3635640, 3745080, 5489280, 31536000, 394329600, 5082739200, 60952953600, 670446201600, 670446201630, 670446202470, 670446225960, 670446859320, 670463302320, 670873719600
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2018

Keywords

Comments

For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=10.

Examples

			a(1) = 10;
a(2) = 10*9 = 90;
a(3) = 10*9*8 = 720;
a(4) = 10*9*8*7 = 5040;
a(5) = 10*9*8*7*6 = 30240;
a(6) = 10*9*8*7*6*5 = 151200;
a(7) = 10*9*8*7*6*5*4 = 604800;
a(8) = 10*9*8*7*6*5*4*3 = 1814400;
a(9) = 10*9*8*7*6*5*4*3*2 = 3628800;
a(10) = 10*9*8*7*6*5*4*3*2*1 = 3628800;
a(11) = 10*9*8*7*6*5*4*3*2*1 + 20 = 3628820;
a(12) = 10*9*8*7*6*5*4*3*2*1 + 20*19 = 3629180;
a(13) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18 = 3635640;
a(14) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17 = 3745080;
a(15) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16 = 5489280;
a(16) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15 = 31536000;
a(17) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14 = 394329600;
a(18) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13 = 5082739200;
a(19) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13*12 = 60952953600;
etc.
		

Crossrefs

For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), this sequence (k=10).

Programs

  • Maple
    a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,10),n=1..25); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    k:=10; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i,1,j }], {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i,1,k} ], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)