cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319917 Unitary sociable numbers of order six.

Original entry on oeis.org

698130, 698310, 698490, 712710, 712890, 713070, 341354790, 348612390, 391662810, 406468314, 411838938, 519891750, 530946330, 582129630, 596171970, 621549630, 717175170, 740700270, 740700450, 743324934, 838902150, 919121658, 1009954170, 1343332998
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Note that the first 6 terms and the next 6 terms form two sociable groups. But then the next 12 terms belong to two distinct sociable groups.

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A319902 (order 4), A097024 (order 5), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok6(n) = iferr(f(f(f(f(f(f(n)))))) == n, E, 0);
    isok3(n) = iferr(f(f(f(n))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok6(n) && !isok1(n) && !isok2(n) && !isok3(n);
    
  • PARI
    A063919(n) = my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + 1) - n
    is(n) = my(c = n); for(i = 1, 5, c = A063919(c); if(c == 1 || c == n, return(0))); c = A063919(c); c == n \\ David A. Corneth, Oct 01 2018