cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327157 Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).

Original entry on oeis.org

6, 30, 42, 54, 60, 90, 114, 126, 1140, 1260, 1482, 1878, 1890, 2142, 2178, 2418, 2958, 3522, 3534, 3582, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4434, 4446, 18018, 22302, 24180, 29580, 32130, 35220, 35238, 35340, 35820, 37740, 38682, 39060, 39540, 39660, 39780, 40446, 41460, 41580, 44340, 44460, 44772, 45402
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2019

Keywords

Comments

Positions of nonzeros in A327159.
Numbers n for which n = A034460^k(n) for some k >= 1, where A034460^k(n) means k-fold application of A034460 starting from n.
The terms that are not multiples of 6 are: 142310, 168730, 1077890, 1099390, 1156870, 1292570, ..., that seem all to be present in A063991.
Among the first 440 terms, there are numbers present in 1-cycles (A002827), 2-cycles (A063991), and also cycles of sizes 3, 4 (A319902), 5 (A097024), 6 (A319917), 14 (A097030), 25, 26, 39 and 65.

Examples

			6 is a member as A034460(6) = 6.
30 is a member as A034460(A034460(A034460(30))) = 30.
		

Crossrefs

Subsequence of A003062.

Programs

  • Mathematica
    (* Function cycleL[] and support a034460[] are defined in A327159 *)
    a327157[n_] := Map[cycleL, Range[n]]
    a327157[45402] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A034460(n) = (A034448(n) - n);
    memo327159 = Map();
    A327159(n) = if(1==n,0,my(v,orgn=n,xs=Set([])); if(mapisdefined(memo327159, n, &v), v, while(n && !vecsearch(xs,n), xs = setunion([n],xs); n = A034460(n); if(mapisdefined(memo327159,n),for(i=1,#xs,mapput(memo327159,xs[i],0)); return(0))); if(n==orgn,v = length(xs); for(i=1,v,mapput(memo327159,xs[i],v)), v = 0; mapput(memo327159,orgn,v)); (v)));
    k=0; n=0; while(k<=1001, n++; if(t=A327159(n), k++; print(n," -> ",t); write("b327157.txt", k," ", n)));

A327159 Size of the cycle containing n in the map x -> usigma(x)-x or 0 if n is not a member of any finite cycle. Here usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Examples

			Because A034460(6) = 6, a(6) = 1.
Because A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, a(30) = a(42) = a(54) = 3.
Because A034460(90) = 90, a(90) = 1. Because A034460(78) = 90, a(78) = 0, as even though 78 ends into a cycle of one, it itself is not a part of that cycle.
		

Crossrefs

Cf. A002827 (positions of ones), A063991 (of 2's), A319902 (of 4's), A097024 (of 5's), A319917 (of 6's), A319937 (of 10's), A097030 (of 14's), A327157 (of all nonzero terms).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 0
    cycleL[k_] := Module[{nL=NestWhileList[a034460, k, UnsameQ, All]}, If[k==Last[nL], Length[nL]-1, 0]]
    a327159[n_] := Map[cycleL, Range[n]]
    a327159[120] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));

A319937 Unitary sociable numbers of order 10.

Original entry on oeis.org

525150234, 527787366, 528544218, 553128198, 612951066, 675192294, 735821562, 982674438, 998151162, 998151174, 5251502340, 5277873660, 5285442180, 5531281980, 6129510660, 6751922940, 7358215620, 9826744380, 9981511620, 9981511740
Offset: 1

Views

Author

Michel Marcus, Oct 02 2018

Keywords

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A097024 (order 5), A319917 (order 6), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok10(n) = iferr(f(f(f(f(f(f(f(f(f(f(n)))))))))) == n, E, 0);
    isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok10(n) && !isok1(n) && !isok2(n) && !isok5(n);
Showing 1-3 of 3 results.