A319929 Minimal arithmetic table similar to multiplication with different rules for odd and even products, read by antidiagonals.
1, 2, 2, 3, 0, 3, 4, 2, 2, 4, 5, 0, 5, 0, 5, 6, 2, 4, 4, 2, 6, 7, 0, 7, 0, 7, 0, 7, 8, 2, 6, 4, 4, 6, 2, 8, 9, 0, 9, 0, 9, 0, 9, 0, 9, 10, 2, 8, 4, 6, 6, 4, 8, 2, 10, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 11, 12, 2, 10, 4, 8, 6, 6, 8, 4, 10, 2, 12
Offset: 1
Examples
T(3,5) = 3 + 5 - 1 = 7, T(4,7) = 4, T(8,8) = 0. Array T(n,k) begins: 1 2 3 4 5 6 7 8 9 10 2 0 2 0 2 0 2 0 2 0 3 2 5 4 7 6 9 8 11 10 4 0 4 0 4 0 4 0 4 0 5 2 7 4 9 6 11 8 13 10 6 0 6 0 6 0 6 0 6 0 7 2 9 4 11 6 13 8 15 10 8 0 8 0 8 0 8 0 8 0 9 2 11 4 13 6 15 8 17 10 10 0 10 0 10 0 10 0 10 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
- Michael De Vlieger, Array plot of T(n,k) for n = 1..150, k = 1..150 with color function indicating value, pale yellow = 0, red = 299.
- David Lovler, Motivation
Programs
-
Mathematica
Table[Function[n, If[OddQ@ n, If[OddQ@ k, n + k - 1, k], If[OddQ@ k, n, 0]]][m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Mar 24 2019 *)
-
PARI
T(n,k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0)); matrix(6, 6, n, k, T(n,k)) \\ Michel Marcus, Dec 22 2018
Formula
T(n,k) = n + k - 1 if n is odd and k is odd;
T(n,k) = n if n is even and k is odd;
T(n,k) = k if n is odd and k is even;
T(n,k) = 0 if n is even and k is even.
Comments