A320014 Filter sequence combining the binary expansions of proper divisors of n, grouped by their residue classes mod 3.
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75
Offset: 1
Keywords
Examples
The first set of numbers that forms a nontrivial equivalence class is [295, 583, 799, 943] = [5*59, 11*53, 17*47, 23*41]. The prime factors in these are all of the form 3k+2, and when the binary expansions of the factors (like e.g., "101" for 5 and "111011" for 59 or "10111" for 23 and "101001" for 41) are overlaid, the resulting bit vector is always [1, 1, 1, 1, 1, 1^2], with the least significant bit-position containing 2 copies of 1's. Thus we have a(295) = a(583) = a(799) = a(943).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565 A319990(n) = { my(m=1); fordiv(n,d,if((d
A019565(d))); m; }; A319991(n) = { my(m=1); fordiv(n,d,if((d A019565(d))); m; }; A319992(n) = { my(m=1); fordiv(n,d,if((d A019565(d))); m; }; v320014 = rgs_transform(vector(up_to,n,[A319990(n),A319991(n),A319992(n)])); A320014(n) = v320014[n];
Comments