cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320043 Row sums of the triangle A322550.

Original entry on oeis.org

1, 6, 13, 50, 37, 196, 189, 384, 351, 1210, 601, 2366, 1471, 2156, 2941, 6936, 3277, 10830, 5563, 9022, 9681, 23276, 9897, 26300, 19267, 30030, 23043, 58870, 21087, 76880, 46717, 59296, 57801, 83546, 50281, 156066, 90973, 117968, 90539, 235340, 86179, 284746
Offset: 1

Views

Author

Stefano Spezia, Dec 16 2018

Keywords

Comments

Conjecture: a(n) is not a perfect square except for n = 1, 6 and 96.

Crossrefs

Programs

  • GAP
    List([1..50], n->Sum([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3));
    
  • Magma
    [(&+[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]): n in [1..50]];
    
  • Maple
    a := n -> sum((n+1-k)^2*k/gcd(n+1-k, k)^3, k = 1 .. n): seq(a(n), n = 1 .. 50);
  • Mathematica
    a[n_]:=Sum[(n+1-k)^2*k/GCD[n+1-k,k]^3, {k, 1, n}]; Array[a, 50]
  • Maxima
    a(n):=sum((n+1-k)^2*k/gcd(n+1-k,k)^3, k, 1, n)$ makelist(a(n), n, 1, 50);
    
  • PARI
    a(n) = sum(k=1, n, (n+1-k)^2*k/gcd(n+1-k,k)^3);
    vector(50, n, a(n))

Formula

a(n) = Sum_{k=1..n} (n + 1 - k)^2*k/gcd(n + 1 - k, k)^3.
a(n) = Sum_{k=1..n} A000290(n + 1 - k)*A000027(k)/A000578(A050873(n + 1 - k, k)).