cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322550 Table read by ascending antidiagonals: T(n, k) is the minimum number of cubes necessary to fill a right square prism with base area n^2 and height k.

Original entry on oeis.org

1, 4, 2, 9, 1, 3, 16, 18, 12, 4, 25, 4, 1, 2, 5, 36, 50, 48, 36, 20, 6, 49, 9, 75, 1, 45, 3, 7, 64, 98, 4, 100, 80, 2, 28, 8, 81, 16, 147, 18, 1, 12, 63, 4, 9, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 121, 25, 9, 4, 245, 1, 175, 2, 3, 5, 11, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44, 12
Offset: 1

Views

Author

Stefano Spezia, Dec 15 2018

Keywords

Examples

			The table T starts in row n = 1 with columns k >= 1 as:
   1     2     3     4     5     6     7     8     9 ...
   4     1    12     2    20     3    28     4    36 ...
   9    18     1    36    45     2    63    72     3 ...
  16     4    48     1    80    12   112     2   144 ...
  25    50    75   100     1   150   175   200   225 ...
  36     9     4    18   180     1   252    36    12 ...
  49    98   147   196   245   294     1   392   441 ...
  64    16   192     4   320    48   448     1   576 ...
  81   162     9   324   405    18   567   648     1 ...
...
The triangle X(n, k) begins
  n\k|   1     2     3     4     5     6     7     8     9
  ---+----------------------------------------------------
   1 |   1
   2 |   4     2
   3 |   9     1     3
   4 |  16    18    12     4
   5 |  25     4     1     2     5
   6 |  36    50    48    36    20     6
   7 |  49     9    75     1    45     3     7
   8 |  64    98     4   100    80     2    28     8
   9 |  81    16   147    18     1    12    63     4     9
...
		

Crossrefs

Cf. A000012 (main diagonal of the table), A000027 (1st row of the table or diagonal of the triangle), A000290 (k=1), A000578, A011379 (superdiagonal of the table), A045991 (subdiagonal of the table), A050873, A119619, A320043 (row sums of the triangle).

Programs

  • GAP
    Flat(List([1..12], n->List([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3)));
    
  • Magma
    [[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]: n in [1..12]]; // triangle output
    
  • Maple
    a := (n, k) -> (n+1-k)^2*k/gcd(n+1-k, k)^3: seq(seq(a(n, k), k = 1 .. n), n = 1 .. 12)
  • Mathematica
    T[n_,k_]:=n^2*k/GCD[n,k]^3; Flatten[Table[T[n-k+1,k], {n, 12}, {k, n}]]
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i+1-j)^2*j/gcd(i+1-j,j)^3, j, 1, i), " ")); display_triangle(12);
    
  • PARI
    T(n, k) = (n+1-k)^2*k/gcd(n+1-k,k)^3;
    tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print);
    tabl(12) \\ triangle output

Formula

T(n, k) = n^2*k/gcd(n, k)^3.
T(n, k) = A000290(n)*k/A000578(A050873(n,k)).
X(n, k) = T(n + 1 - k, k).
X(2*n - 1, n) = A000012(n).
Product_{k=1..n} X(n, k)^(1/3) = A119619(n+1). - Stefano Spezia, Jun 24 2024
Showing 1-1 of 1 results.