A320043 Row sums of the triangle A322550.
1, 6, 13, 50, 37, 196, 189, 384, 351, 1210, 601, 2366, 1471, 2156, 2941, 6936, 3277, 10830, 5563, 9022, 9681, 23276, 9897, 26300, 19267, 30030, 23043, 58870, 21087, 76880, 46717, 59296, 57801, 83546, 50281, 156066, 90973, 117968, 90539, 235340, 86179, 284746
Offset: 1
Keywords
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Programs
-
GAP
List([1..50], n->Sum([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3));
-
Magma
[(&+[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]): n in [1..50]];
-
Maple
a := n -> sum((n+1-k)^2*k/gcd(n+1-k, k)^3, k = 1 .. n): seq(a(n), n = 1 .. 50);
-
Mathematica
a[n_]:=Sum[(n+1-k)^2*k/GCD[n+1-k,k]^3, {k, 1, n}]; Array[a, 50]
-
Maxima
a(n):=sum((n+1-k)^2*k/gcd(n+1-k,k)^3, k, 1, n)$ makelist(a(n), n, 1, 50);
-
PARI
a(n) = sum(k=1, n, (n+1-k)^2*k/gcd(n+1-k,k)^3); vector(50, n, a(n))
Comments