cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A320067 Expansion of Product_{k>0} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 202, 258, 370, 478, 602, 828, 1042, 1332, 1758, 2198, 2758, 3572, 4448, 5518, 7012, 8636, 10654, 13350, 16362, 19946, 24722, 30070, 36478, 44776, 54010, 65202, 79234, 95196, 114166, 137686, 164530, 196252, 235308, 279718, 332002
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ..., a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2: j in [1..Floor(2*m/k)]]): k in [1..2*m]]))); // G. C. Greubel, Oct 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[EllipticTheta[3, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2018 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(1/(prod(k=1,2*m, prod(j=1,floor(2*m/k), (1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2 )))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Expansion of Product_{k>0} eta(q^(2*k))^5 / (eta(q^k)*eta(q^(4*k)))^2.
a(n) ~ log(2)^(3/8) * exp(Pi*sqrt(n*log(2))) / (4 * Pi^(1/4) * n^(7/8)). - Vaclav Kotesovec, Oct 05 2018
Expansion of Product_{k>0} theta_4(q^(2*k))/theta_4(q^(2*k-1)), where theta_4() is the Jacobi theta function. - Seiichi Manyama, Oct 26 2018

A320992 Expansion of (Product_{k>0} theta_4(q^k)/theta_3(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, -2, 0, -2, 6, -2, 4, -6, 8, -16, 8, -14, 26, -26, 24, -30, 58, -50, 60, -78, 90, -118, 104, -138, 192, -224, 204, -268, 366, -354, 412, -474, 596, -694, 724, -818, 1052, -1162, 1176, -1470, 1756, -1918, 2052, -2434, 2814, -3168, 3396, -3806, 4674, -5124, 5396
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2018

Keywords

Crossrefs

Convolution inverse of A320968.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[Sqrt[EllipticTheta[4, 0, x^k] / EllipticTheta[3, 0, x^k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 26 2018 *)

Formula

a(n) = (-1)^n * A320078(n).
Expansion of Product_{k>0} (eta(q^k)^2*eta(q^(4*k))) / eta(q^(2*k))^3.
Expansion of Product_{k>0} theta_4(q^(2*k-1)).
a(n) ~ (-1)^n * (log(2))^(1/4) * exp(Pi*sqrt(n*log(2)/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Oct 26 2018

A320098 Expansion of Product_{k>0} 1/theta_3(q^(2*k-1)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, -2, 4, -10, 18, -34, 64, -110, 188, -320, 524, -846, 1358, -2130, 3308, -5102, 7750, -11674, 17468, -25862, 38022, -55558, 80532, -116034, 166284, -236784, 335416, -472868, 663146, -925762, 1286920, -1780962, 2454792, -3370806, 4610656, -6284090, 8535868, -11554834
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[EllipticTheta[3, 0, x^(2*k-1)], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2018 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*j*(2*k - 1)))^2/((1 - x^((2*k - 1)*j))*(1 + x^((2*k - 1)*j))^3), {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2018 *)
  • PARI
    q='q+O('q^80); Vec(1/prod(k=1,50, eta(q^(2*(2*k-1)))^5/( eta(q^(2*k-1))* eta(q^(4*(2*k-1))))^2 ) ) \\ G. C. Greubel, Oct 29 2018

Formula

Convolution inverse of A320078.
Expansion of Product_{k>0} (eta(q^(2*k-1))*eta(q^(4*(2*k-1))))^2 / eta(q^(2*(2*k-1)))^5.

A320239 Expansion of theta_3(q) * theta_3(q^3) * theta_3(q^5), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 2, 6, 2, 4, 4, 4, 14, 0, 0, 14, 4, 4, 0, 6, 12, 8, 4, 2, 20, 0, 4, 20, 2, 8, 10, 12, 4, 4, 4, 16, 32, 0, 0, 26, 4, 0, 12, 0, 20, 8, 4, 8, 6, 4, 4, 42, 18, 0, 8, 20, 12, 16, 0, 12, 48, 8, 8, 0, 16, 8, 12, 14, 0, 16, 4, 20, 24, 4, 0, 36, 28, 0, 2, 20, 8, 8, 4, 6
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, a_3) to the equation a_1^2 + 3*a_2^2 + 5*a_3^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^(2*k-1)): A000122 (m=1), A033716 (m=2), this sequence (m=3), A320240 (m=4).
Cf. A320078.

A320240 Expansion of theta_3(q) * theta_3(q^3) * theta_3(q^5) * theta_3(q^7), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 2, 6, 2, 4, 6, 8, 14, 4, 12, 18, 12, 12, 8, 34, 12, 8, 32, 10, 28, 0, 16, 44, 18, 16, 14, 54, 8, 12, 48, 32, 52, 28, 32, 42, 40, 8, 44, 92, 28, 16, 56, 28, 30, 44, 12, 86, 74, 8, 32, 72, 24, 40, 104, 72, 56, 32, 56, 56, 112, 8, 38, 166, 24, 36, 40, 56, 88, 52
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, a_3, a_4) to the equation a_1^2 + 3*a_2^2 + 5*a_3^2 + 7*a_4^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^(2*k-1)): A000122 (m=1), A033716 (m=2), A320239 (m=3), this sequence (m=4).
Cf. A320078.

A321026 Expansion of Product_{k>0} theta_3(q^(2*k-1))/theta_3(q^(2*k)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, -2, -2, 8, 2, -14, -6, 24, 20, -54, -30, 104, 42, -170, -94, 302, 170, -524, -254, 852, 422, -1406, -706, 2256, 1144, -3550, -1796, 5628, 2710, -8670, -4254, 13190, 6650, -20118, -9842, 30200, 14618, -44874, -22014, 66376, 32590, -97350, -47398, 141788, 68668
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2018

Keywords

Crossrefs

A329264 a(n) is the number of solutions of the infinite Diophantine equation Sum_{j>0} j^r*(k_j)^2 = n with k_j integers and r = 2.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 4, 4, 0, 0, 12, 8, 0, 6, 16, 4, 0, 16, 8, 8, 0, 8, 24, 20, 0, 0, 52, 24, 0, 12, 32, 28, 8, 24, 12, 48, 16, 24, 68, 48, 8, 16, 96, 32, 16, 8, 68, 96, 32, 40, 68, 128, 32, 80, 88, 76, 48, 32, 156, 104, 64, 8, 224, 192, 40, 88, 152, 208
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2019

Keywords

Examples

			a(16) = 6 since there are 6 integer solutions to 1^2*k1^2 + 2^2*k2^2 + 3^2*k3^2 + 4^2*k4^2 + ... = 16:
k1 = +-4 and k_j = 0 for j > 1;
k1 = 0, k2 = +-2 and k_j = 0 for j > 2;
k1 = k2 = k3 = 0, k4 = +-1 and k_j = 0 for j > 4.
		

Crossrefs

Cf. A000041, A000122, A320067 (r = 1), A320068, A320078, A320968, A320992, A329265 (r = 3), A329266 (r = 4).

Programs

  • Mathematica
    nmax=70; r=2; CoefficientList[Series[Product[Product[(1-(-1)^n*q^(n*j^r))/(1+(-1)^n*q^(n*j^r)),{n,1,nmax}],{j,1,nmax}],{q,0,nmax}],q]

Formula

a(n) = [q^n] Product_{j>0} Product_{n>0} (1 - (-1)^n*q^(n*j^r)) / (1 + (-1)^n*q^(n*j^r)) with r = 2 (see Proposition 1.1 in Zhou and Sun).

A329265 a(n) is the number of solutions of the infinite Diophantine equation Sum_{j>0} j^r*(k_j)^2 = n with k_j integers and r = 3.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 2, 4, 0, 0, 4, 2, 8, 0, 4, 18, 0, 0, 8, 0, 4, 0, 4, 12, 0, 0, 0, 4, 2, 0, 8, 4, 0, 0, 0, 0, 8, 0, 4, 16, 0, 0, 12, 4, 4, 0, 0, 16, 0, 0, 8, 10, 16, 0, 8, 16, 0, 0, 0, 4, 18, 0, 0, 16
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2019

Keywords

Examples

			a(9) = 6 since there are 6 integer solutions to 1^3*k1^2 + 2^3*k2^2 + ... = 9:
k1 = +-3 and k_j = 0 for j > 1;
k1 = -1, k2 = +-1 and k_j = 0 for j > 2;
k1 = 1, k2 = +-1 and k_j = 0 for j > 2.
		

Crossrefs

Cf. A000041, A000122, A320067 (r = 1), A320068, A320078, A320968, A320992, A329264 (r = 2), A329266 (r = 4).

Programs

  • Mathematica
    nmax=85; r=3; CoefficientList[Series[Product[Product[(1-(-1)^n*q^(n*j^r))/(1+(-1)^n*q^(n*j^r)),{n,1,nmax}],{j,1,nmax}],{q,0,nmax}],q]

Formula

a(n) = [q^n] Product_{j>0} Product_{n>0} (1 - (-1)^n*q^(n*j^r)) / (1 + (-1)^n*q^(n*j^r)) with r = 3 (see Proposition 1.1 in Zhou and Sun).

A329266 a(n) is the number of solutions of the infinite Diophantine equation Sum_{j>0} j^r*(k_j)^2 = n with k_j integers and r = 4.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 4, 4, 0, 0, 4, 0, 0
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2019

Keywords

Examples

			a(25) = 6 since there are 6 integer solutions to 1^4*k1^2 + 2^4*k2^2 + ... = 25:
k1 = +-5 and k_j = 0 for j > 1;
k1 = -3, k2 = +-1 and k_j = 0 for j > 2;
k1 = 3, k2 = +-1 and k_j = 0 for j > 2.
		

Crossrefs

Cf. A000041, A000122, A320067 (r = 1), A320068, A320078, A320968, A320992, A329264 (r = 2), A329265 (r = 3).

Programs

  • Mathematica
    nmax=87;r=4;CoefficientList[Series[Product[Product[(1-(-1)^n*q^(n*j^r))/(1+(-1)^n*q^(n*j^r)),{n,1,nmax}],{j,1,nmax}],{q,0,nmax}],q]

Formula

a(n) = [q^n] Product_{j>0} Product_{n>0} (1 - (-1)^n*q^(n*j^r)) / (1 + (-1)^n*q^(n*j^r)) with r = 4 (see Proposition 1.1 in Zhou and Sun).
Showing 1-9 of 9 results.