cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320091 Number of primitive (=aperiodic) 7-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.

Original entry on oeis.org

1, 7, 55, 391, 2791, 19543, 137191, 960391, 6725143, 47076343, 329551591, 2306861191, 16148148391, 113037041143, 791260111543, 5538820797943, 38771751367543, 271402259573191, 1899815857483639, 13298711002502839, 93090977299997143, 651636841100805895
Offset: 1

Views

Author

Alois P. Heinz, Oct 05 2018

Keywords

Crossrefs

Column k=7 of A143327.
Partial sums of A320072.

Programs

  • Maple
    b:= n-> add(`if`(d=n, 7^(n-1), -b(d)), d=numtheory[divisors](n)):
    a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
    seq(a(n), n=1..30);
  • PARI
    a(n) = sum(j=1, n, sumdiv(j, d, 7^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020

Formula

a(n) = Sum_{j=1..n} Sum_{d|j} 7^(d-1) * mu(j/d).
a(n) = A143327(n,7).
a(n) = Sum_{j=1..n} A143325(j,7).
a(n) = A143326(n,7) / 7.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 7*x^k). - Ilya Gutkovskiy, Dec 11 2020