A320224 a(1) = 1; a(n > 1) = Sum_{k = 1..n-1} Sum_{d|k, d < k} a(d).
1, 0, 1, 2, 3, 4, 6, 7, 10, 12, 16, 17, 25, 26, 33, 38, 48, 49, 65, 66, 84, 92, 109, 110, 142, 146, 172, 184, 219, 220, 274, 275, 323, 341, 390, 400, 484, 485, 551, 578, 669, 670, 792, 793, 904, 952, 1062, 1063, 1243, 1250, 1408, 1458, 1632, 1633, 1870, 1890
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
sol:=[1]; for n in [2..56] do Append(~sol, &+[sol[d]*Floor((n-1)/d-1):d in [1..n-1]]); end for; sol; // Marius A. Burtea, Sep 07 2019
-
Mathematica
sau[n_]:=If[n==1,1,Sum[sau[d],{k,n-1},{d,Most[Divisors[k]]}]]; Table[sau[n],{n,60}]
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(k=1, n-1, v[k]*((n-1)\k - 1))); v} \\ Andrew Howroyd, Sep 07 2019
Formula
a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor((n-1)/d - 1).
G.f. A(x) satisfies A(x) = x + (x/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019