A320256 k-digit primes with the same even digit repeated k-1 times and a single odd digit.
3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 223, 227, 229, 443, 449, 661, 881, 883, 887, 2221, 4441, 4447, 6661, 8887, 22229, 44449, 88883, 444443, 444449, 666667, 888887, 22222223, 66666667, 88888883, 222222227, 444444443, 666666667, 888888883, 888888887
Offset: 1
Examples
3, 5, 7 are in the sequence for k = 1. 229 is in the sequence because it is a 3-digit prime with the first 3-1 digits repeating even (2) and the last digit odd (9). - _David A. Corneth_, Oct 10 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..132
Programs
-
Mathematica
Join[{3, 5, 7}, Select[Flatten@ Table[{1, 3, 7, 9} + 10 FromDigits@ ConstantArray[k, n], {n, 9}, {k, Range[2, 8, 2]}], PrimeQ]] (* Michael De Vlieger, Oct 31 2018 *)
-
PARI
first(n) = {n = max(n, 3); my(t = 3, res = List([3, 5, 7])); print1("3, 5, 7, "); for(i=1, oo, k=(10^i - 1) / 9; forstep(f = 2, 8, 2, forstep(d=1, 9, 2, c = 10 * f * k + d; if(isprime(c), print1(c", "); listput(res, c); t++; if(t>=n, return(res))))))} \\ David A. Corneth, Oct 10 2018
Extensions
More terms from Michel Marcus, Oct 10 2018
Comments