A320387 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.
1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 5, 3, 5, 7, 4, 7, 8, 6, 8, 11, 7, 9, 13, 9, 11, 16, 12, 15, 18, 13, 17, 20, 17, 21, 24, 19, 24, 30, 22, 28, 34, 26, 34, 38, 30, 37, 43, 37, 42, 48, 41, 50, 58, 48, 55, 64, 53, 64, 71, 59, 73, 81, 69, 79, 89, 79, 90, 101, 87, 100, 111
Offset: 0
Keywords
Examples
There are a(29) = 15 such partitions of 29: 01: [29] 02: [10, 19] 03: [11, 18] 04: [12, 17] 05: [13, 16] 06: [14, 15] 07: [5, 10, 14] 08: [6, 10, 13] 09: [6, 11, 12] 10: [7, 10, 12] 11: [8, 10, 11] 12: [3, 6, 9, 11] 13: [5, 7, 8, 9] 14: [2, 4, 6, 8, 9] 15: [3, 5, 6, 7, 8] There are a(30) = 18 such partitions of 30: 01: [30] 02: [10, 20] 03: [11, 19] 04: [12, 18] 05: [13, 17] 06: [14, 16] 07: [5, 10, 15] 08: [6, 10, 14] 09: [6, 11, 13] 10: [7, 10, 13] 11: [7, 11, 12] 12: [8, 10, 12] 13: [3, 6, 9, 12] 14: [9, 10, 11] 15: [4, 7, 9, 10] 16: [2, 4, 6, 8, 10] 17: [6, 7, 8, 9] 18: [4, 5, 6, 7, 8]
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..2000 (terms 0..300 from Seiichi Manyama)
Crossrefs
A053632 counts compositions by weighted sum.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ots[y_]:=Sum[i*y[[i]],{i,Length[y]}]; Table[Length[Select[Range[2^n],ots[prix[#]]==n&]],{n,10}] (* Gus Wiseman, Jan 17 2023 *)
-
PARI
seq(n)={Vec(sum(k=1, (sqrtint(8*n+1)+1)\2, my(t=binomial(k,2)); x^t/prod(j=1, k-1, 1 - x^(t-binomial(j,2)) + O(x^(n-t+1)))))} \\ Andrew Howroyd, Jan 22 2023
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} end def f(n) return 1 if n == 0 cnt = 0 partition(n, 1, n).each{|ary| ary << 0 ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} cnt += 1 if ary0.sort == ary0 } cnt end def A320387(n) (0..n).map{|i| f(i)} end p A320387(50)
Formula
G.f.: Sum_{k>=1} x^binomial(k,2)/Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2))). - Andrew Howroyd, Jan 22 2023
Comments