A320388 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are decreasing.
1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 7, 9, 11, 10, 12, 15, 14, 16, 19, 18, 21, 25, 23, 26, 31, 29, 33, 38, 36, 40, 46, 44, 49, 56, 53, 58, 66, 64, 70, 77, 76, 82, 92, 89, 96, 106, 104, 113, 123, 120, 130, 142, 141, 149, 162, 160, 172, 186, 184, 195, 211, 210, 223, 238
Offset: 0
Keywords
Examples
There are a(17) = 15 such partitions of 17: 01: [17] 02: [1, 16] 03: [2, 15] 04: [3, 14] 05: [4, 13] 06: [5, 12] 07: [6, 11] 08: [7, 10] 09: [1, 6, 10] 10: [8, 9] 11: [1, 7, 9] 12: [2, 6, 9] 13: [2, 7, 8] 14: [3, 6, 8] 15: [4, 6, 7] There are a(18) = 14 such partitions of 18: 01: [18] 02: [1, 17] 03: [2, 16] 04: [3, 15] 05: [4, 14] 06: [5, 13] 07: [6, 12] 08: [7, 11] 09: [8, 10] 10: [1, 7, 10] 11: [1, 8, 9] 12: [2, 7, 9] 13: [3, 7, 8] 14: [1, 4, 6, 7]
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..2000 (terms 0..100 from Seiichi Manyama)
Programs
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} end def f(n) return 1 if n == 0 cnt = 0 partition(n, 1, n).each{|ary| ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0 } cnt end def A320388(n) (0..n).map{|i| f(i)} end p A320388(50)
Comments