cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320524 Number of chiral pairs of a row of n colors using 6 or fewer colors.

Original entry on oeis.org

0, 15, 90, 630, 3780, 23220, 139320, 839160, 5034960, 30229200, 181375200, 1088367840, 6530207040, 39181942080, 235091652480, 1410554113920, 8463324683520, 50779973295360, 304679839772160, 1828079189798400, 10968475138790400, 65810851739735040, 394865110438410240, 2369190668072417280, 14215144008434503680, 85290864083258757120
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

A chiral row is different from its reverse.

Examples

			For a(2)=15, the chiral pairs are the fifteen combinations of six colors taken two at a time, e.g., AB-BA.
		

Crossrefs

Column 6 of A293500.
Cf. A000400 (oriented), A056308 (unoriented), A056452 (achiral).

Programs

  • Magma
    [(6^n - 6^Ceiling(n / 2)) / 2: n in [1..25]]; // Vincenzo Librandi, Oct 15 2018
    
  • Mathematica
    k = 6; Table[(k^n - k^Ceiling[n/2])/2, {n, 1, 30}]
    LinearRecurrence[{6, 6, -36}, {0, 15, 90}, 30]
  • PARI
    m=40; v=concat([0,15,90], vector(m-3)); for(n=4, m, v[n] = 6*v[n-1] +6*v[n-2] -36*v[n-3]); v \\ G. C. Greubel, Oct 17 2018

Formula

a(n) = (k^n - k^ceiling(n/2)) / 2, where k=6 is maximum number of colors.
G.f.: k*x^2*(k-1) / (2*(1-k*x)*(1-k*x^2)), where k=6.
a(n) = (A000400(n) - A056452(n)) / 2 = A000400(n) - A056308(n) = A056308(n) - A056452(n).