cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320563 Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^k.

Original entry on oeis.org

1, 1, 4, 13, 41, 125, 374, 1103, 3213, 9259, 26430, 74806, 210095, 585890, 1623240, 4470232, 12241799, 33349751, 90410255, 243977941, 655553258, 1754265279, 4676358086, 12420299846, 32873598566, 86721264126, 228051843891, 597905347237, 1563071037798, 4074973824099
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

First differences of the binomial transform of A000219.

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1-x^k/(1-x)^k)^(-k),k=1..n),x,n+1), x, n), n = 0 .. 29); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[Product[1/(1 - x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)).
a(n) ~ Zeta(3)^(7/36) * 2^(n - 11/18) * exp(3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) + (1 - Zeta(3))/12) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 15 2018