cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A320564 Expansion of Product_{k>=1} (1 + x^k/(1 - x)^k)^k.

Original entry on oeis.org

1, 1, 3, 10, 30, 87, 249, 705, 1974, 5471, 15032, 40997, 111079, 299151, 801139, 2134251, 5657895, 14930596, 39232009, 102673794, 267692321, 695440442, 1800582809, 4646964755, 11956293758, 30673060344, 78470890246, 200218512582, 509557661691, 1293664233400, 3276659862518
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

First differences of the binomial transform of A026007.

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1+x^k/(1-x)^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (1 - x)^k x^k/(k ((1 - x)^k - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*(1 - x)^k*x^k/(k*((1 - x)^k - x^k)^2)).
a(n) ~ Zeta(3)^(1/6) * 2^(n - 13/12) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4 + (3*Zeta(3))^(2/3) * n^(1/3)/8 - Zeta(3)/16) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 15 2018

A307261 Expansion of Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).

Original entry on oeis.org

1, 1, 4, 13, 42, 130, 397, 1197, 3566, 10517, 30760, 89293, 257397, 737220, 2099215, 5945594, 16756258, 47004829, 131286914, 365203797, 1012031772, 2794446326, 7690009600, 21094325177, 57687762889, 157306741287, 427777384499, 1160250104637, 3139067594584, 8472525405830, 22815639395641
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Comments

First differences of the binomial transform of A006906.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-k*x^k/(1-x)^k),k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

A307679 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^(1/k).

Original entry on oeis.org

1, 1, 5, 35, 323, 3679, 49819, 781465, 13923545, 277563617, 6118251461, 147715469131, 3875706370315, 109781717161375, 3338229675519803, 108443658227589329, 3747688533281296049, 137273241169036231105, 5311844045472206624005, 216505267421266611639667, 9270689769095765333645651
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2019

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 35*x^3/3! + 323*x^4/4! + 3679*x^5/5! + 49819*x^6/6! + 781465*x^7/7! + 13923545*x^8/8! + ...
log(A(x)) = x + 4*x^2/2 + 11*x^3/3 + 27*x^4/4 + 62*x^5/5 + 137*x^6/6 + 296*x^7/7 + 630*x^8/8 + 1326*x^9/9 + ... + A160399(k)*x^k/k + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - x^k/(1 - x)^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} d(k)*x^k/(k*(1 - x)^k)), where d(k) is the number of divisors of k (A000005).
a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A028342(k)*n!/k!.

A307574 Expansion of Product_{k>=1} (1 - (x/(1-x))^k)^k.

Original entry on oeis.org

1, -1, -3, -6, -10, -11, 3, 63, 240, 677, 1622, 3415, 6277, 9485, 8917, -9299, -83683, -309568, -902995, -2315518, -5411355, -11662530, -23117627, -41317787, -62820880, -65358588, 29550902, 449154266, 1783671567, 5453429052, 14668699694, 36273441659
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2019

Keywords

Crossrefs

Convolution inverse of A320563.

Programs

  • Mathematica
    m = 31; CoefficientList[Series[Product[(1 - (x/(1-x))^k)^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(x/(1-x))^k)^k))

A320569 a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/(k*(1 - x)^k)).

Original entry on oeis.org

1, 1, 4, 25, 272, 5028, 173754, 11639691, 1488266409, 375932630887, 190981026883402, 191456188687238845, 388595050299100664773, 1602566853459119962711220, 13153292027392201138778117308, 220500920265786114712328027650814, 7523329040995438987558888118224263531
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1-x^k/(1-x)^k)^(-k^(n-1)),k=1..n),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n, k] x^k/(k (1 - x)^k), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Product[1/(1 - x^k/(1 - x)^k)^(k^(n - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 16}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^(k^(n-1)).
Showing 1-5 of 5 results.