cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320586 Expansion of (1/(1 - x)) * Sum_{k>=1} k*x^k/(x^k + (1 - x)^k).

Original entry on oeis.org

1, 3, 10, 27, 66, 156, 365, 843, 1909, 4238, 9274, 20136, 43564, 94013, 202155, 432475, 919820, 1945767, 4098852, 8610922, 18061277, 37844128, 79212323, 165565920, 345412341, 719047566, 1493488927, 3095654281, 6405734456, 13238611241, 27336762272, 56416256443, 116376652600
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

Binomial transform of A000593.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1/(1 +-x))*(&+[k*x^k/(x^k + (1 - x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series((1/(1-x))*add(k*x^k/(x^k+(1-x)^k),k=1..n),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 33; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^k/(x^k + (1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 33; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x/(1 - x)]^4 + EllipticTheta[2, 0, x/(1 - x)]^4 - 1)/(24 (1 - x)), {x, 0, nmax}], x]]
    Table[Sum[Binomial[n, k] Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}], {k, n}], {n, 33}]
  • PARI
    m=50; x='x+O('x^m); Vec((1/(1 - x))*sum(k=1, m+2, k*x^k/(x^k + (1 - x)^k))) \\ G. C. Greubel, Oct 30 2018
    

Formula

G.f.: (theta_3(x/(1 - x))^4 + theta_2(x/(1 - x))^4 - 1)/(24*(1 - x)), where theta_() is the Jacobi theta function.
L.g.f.: Sum_{k>=1} A000593(k)*x^k/(k*(1 - x)^k) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{k=1..n} binomial(n,k)*A000593(k).
Conjecture: a(n) ~ c * 2^n * n, where c = Pi^2/24 = 0.411233516712... - Vaclav Kotesovec, Jun 26 2019