A320590 Expansion of Product_{k>=1} 1/(1 - x^k/(1 + x)^k).
1, 1, 1, 0, 1, -2, 5, -12, 28, -63, 137, -290, 604, -1253, 2617, -5537, 11870, -25666, 55617, -120103, 257582, -548119, 1158437, -2437114, 5117165, -10748530, 22621055, -47728657, 100932549, -213750621, 452855190, -958925784, 2028187595, -4283531490, 9033779224
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1 - x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018 -
Maple
seq(coeff(series(mul(1/(1-x^k/(1+x)^k),k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 16 2018
-
Mathematica
nmax = 34; CoefficientList[Series[Product[1/(1 - x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 34; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
-
PARI
m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1 - x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
Formula
G.f.: exp(Sum_{k>=1} x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} sigma(k)*x^k/(k*(1 + x)^k)).
Comments