cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A320628 Products of primes of nonprime index.

Original entry on oeis.org

1, 2, 4, 7, 8, 13, 14, 16, 19, 23, 26, 28, 29, 32, 37, 38, 43, 46, 47, 49, 52, 53, 56, 58, 61, 64, 71, 73, 74, 76, 79, 86, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 112, 113, 116, 122, 128, 131, 133, 137, 139, 142, 146, 148, 149, 151, 152, 158, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.
The asymptotic density of this sequence is Product_{p in A006450} (1 - 1/p) = 1/(Sum_{n>=1} 1/A076610(n)) < 1/3. - Amiram Eldar, Feb 02 2021

Examples

			The sequence of terms begins:
   1 = 1
   2 = prime(1)
   4 = prime(1)^2
   7 = prime(4)
   8 = prime(1)^3
  13 = prime(6)
  14 = prime(1)*prime(4)
  16 = prime(1)^4
  19 = prime(8)
  23 = prime(9)
  26 = prime(1)*prime(6)
  28 = prime(1)^2*prime(4)
  29 = prime(10)
  32 = prime(1)^5
  37 = prime(12)
  38 = prime(1)*prime(8)
  43 = prime(14)
  46 = prime(1)*prime(9)
  47 = prime(15)
  49 = prime(4)^2
  52 = prime(1)^2*prime(6)
  53 = prime(16)
  56 = prime(1)^3*prime(4)
  58 = prime(1)*prime(10)
  61 = prime(18)
  64 = prime(1)^6
  71 = prime(20)
  73 = prime(21)
  74 = prime(1)*prime(12)
  76 = prime(1)^2*prime(8)
  79 = prime(22)
  86 = prime(1)*prime(14)
  89 = prime(24)
  91 = prime(4)*prime(6)
  92 = prime(1)^2*prime(9)
  94 = prime(1)*prime(15)
  97 = prime(25)
  98 = prime(1)*prime(4)^2
		

Crossrefs

Complement of A331386.
Positions of zeros in A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are this sequence.
The number of prime prime indices is given by A257994.
The number of nonprime prime indices is given by A330944.

Programs

  • Mathematica
    Select[Range[100],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]&]

A320629 Products of odd primes of nonprime index.

Original entry on oeis.org

1, 7, 13, 19, 23, 29, 37, 43, 47, 49, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.
The asymptotic density of this sequence is (1/2) * Product_{p in A006450} (1 - 1/p) = 1/(2*Sum_{n>=1} 1/A076610(n)) < 1/6. - Amiram Eldar, Feb 02 2021

Examples

			The sequence of terms begins:
    1 = 1
    7 = prime(4)
   13 = prime(6)
   19 = prime(8)
   23 = prime(9)
   29 = prime(10)
   37 = prime(12)
   43 = prime(14)
   47 = prime(15)
   49 = prime(4)^2
   53 = prime(16)
   61 = prime(18)
   71 = prime(20)
   73 = prime(21)
   79 = prime(22)
   89 = prime(24)
   91 = prime(4)*prime(6)
   97 = prime(25)
  101 = prime(26)
  103 = prime(27)
  107 = prime(28)
  113 = prime(30)
  131 = prime(32)
  133 = prime(4)*prime(8)
  137 = prime(33)
  139 = prime(34)
  149 = prime(35)
  151 = prime(36)
  161 = prime(4)*prime(9)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,100,2],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]&]

A339113 Products of primes of squarefree semiprime index (A322551).

Original entry on oeis.org

1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Also MM-numbers of labeled multigraphs (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins:
      1: {}               233: {{2,7}}          487: {{2,11}}
     13: {{1,2}}          257: {{3,5}}          491: {{1,15}}
     29: {{1,3}}          269: {{2,8}}          499: {{3,8}}
     43: {{1,4}}          271: {{1,10}}         559: {{1,2},{1,4}}
     47: {{2,3}}          293: {{1,11}}         577: {{1,16}}
     73: {{2,4}}          313: {{3,6}}          607: {{2,12}}
     79: {{1,5}}          347: {{2,9}}          611: {{1,2},{2,3}}
    101: {{1,6}}          373: {{1,12}}         631: {{3,9}}
    137: {{2,5}}          377: {{1,2},{1,3}}    647: {{1,17}}
    139: {{1,7}}          389: {{4,5}}          653: {{4,7}}
    149: {{3,4}}          421: {{1,13}}         673: {{1,18}}
    163: {{1,8}}          439: {{3,7}}          677: {{2,13}}
    167: {{2,6}}          443: {{1,14}}         727: {{2,14}}
    169: {{1,2},{1,2}}    449: {{2,10}}         751: {{4,8}}
    199: {{1,9}}          467: {{4,6}}          757: {{1,19}}
		

Crossrefs

These primes (of squarefree semiprime index) are listed by A322551.
The strict (squarefree) case is A309356.
The prime instead of squarefree semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of squarefree semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The semiprime instead of squarefree semiprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A002100 counts partitions into squarefree semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices, which are listed by A112798.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339561 lists products of distinct squarefree semiprimes (ranking: A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A320631 Products of odd primes of nonprime squarefree index.

Original entry on oeis.org

13, 29, 43, 47, 73, 79, 101, 113, 137, 139, 149, 163, 167, 169, 181, 199, 233, 257, 269, 271, 293, 313, 317, 347, 349, 373, 377, 389, 397, 421, 439, 443, 449, 467, 487, 491, 499, 557, 559, 571, 577, 601, 607, 611, 619, 631, 647, 653, 673, 677, 727, 733, 751
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			The sequence of terms begins:
   13 = prime(6)
   29 = prime(10)
   43 = prime(14)
   47 = prime(15)
   73 = prime(21)
   79 = prime(22)
  101 = prime(26)
  113 = prime(30)
  137 = prime(33)
  139 = prime(34)
  149 = prime(35)
  163 = prime(38)
  167 = prime(39)
  169 = prime(6)^2
  181 = prime(42)
  199 = prime(46)
  233 = prime(51)
  257 = prime(55)
  269 = prime(57)
  271 = prime(58)
  293 = prime(62)
  313 = prime(65)
  317 = prime(66)
  347 = prime(69)
  349 = prime(70)
  373 = prime(74)
  377 = prime(6)*prime(10)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,100,2],With[{f=PrimePi/@First/@FactorInteger[#]},And[And@@SquareFreeQ/@f,And@@Not/@PrimeQ/@f]]&]

A329630 Products of distinct primes of nonprime squarefree index.

Original entry on oeis.org

1, 2, 13, 26, 29, 43, 47, 58, 73, 79, 86, 94, 101, 113, 137, 139, 146, 149, 158, 163, 167, 181, 199, 202, 226, 233, 257, 269, 271, 274, 278, 293, 298, 313, 317, 326, 334, 347, 349, 362, 373, 377, 389, 397, 398, 421, 439, 443, 449, 466, 467, 487, 491, 499, 514
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of sets of non-singleton sets.

Examples

			The sequence of terms together with their corresponding sets of sets begins:
    1: {}
    2: {{}}
   13: {{1,2}}
   26: {{},{1,2}}
   29: {{1,3}}
   43: {{1,4}}
   47: {{2,3}}
   58: {{},{1,3}}
   73: {{2,4}}
   79: {{1,5}}
   86: {{},{1,4}}
   94: {{},{2,3}}
  101: {{1,6}}
  113: {{1,2,3}}
  137: {{2,5}}
  139: {{1,7}}
  146: {{},{2,4}}
  149: {{3,4}}
  158: {{},{1,5}}
  163: {{1,8}}
		

Crossrefs

MM-numbers of sets of nonempty sets are A329629.
Products of primes of nonprime squarefree index are A320630.
Products of prime numbers of squarefree index are A302478.
Products of primes of nonprime index are A320628.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&!MemberQ[primeMS[#],_?PrimeQ]&]

A340104 Products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 2, 7, 13, 14, 19, 23, 26, 29, 37, 38, 43, 46, 47, 53, 58, 61, 71, 73, 74, 79, 86, 89, 91, 94, 97, 101, 103, 106, 107, 113, 122, 131, 133, 137, 139, 142, 146, 149, 151, 158, 161, 163, 167, 173, 178, 181, 182, 193, 194, 197, 199, 202, 203, 206, 214, 223, 226
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding prime indices of prime indices begins:
     1: {}              58: {{},{1,3}}        113: {{1,2,3}}
     2: {{}}            61: {{1,2,2}}         122: {{},{1,2,2}}
     7: {{1,1}}         71: {{1,1,3}}         131: {{1,1,1,1,1}}
    13: {{1,2}}         73: {{2,4}}           133: {{1,1},{1,1,1}}
    14: {{},{1,1}}      74: {{},{1,1,2}}      137: {{2,5}}
    19: {{1,1,1}}       79: {{1,5}}           139: {{1,7}}
    23: {{2,2}}         86: {{},{1,4}}        142: {{},{1,1,3}}
    26: {{},{1,2}}      89: {{1,1,1,2}}       146: {{},{2,4}}
    29: {{1,3}}         91: {{1,1},{1,2}}     149: {{3,4}}
    37: {{1,1,2}}       94: {{},{2,3}}        151: {{1,1,2,2}}
    38: {{},{1,1,1}}    97: {{3,3}}           158: {{},{1,5}}
    43: {{1,4}}        101: {{1,6}}           161: {{1,1},{2,2}}
    46: {{},{2,2}}     103: {{2,2,2}}         163: {{1,8}}
    47: {{2,3}}        106: {{},{1,1,1,1}}    167: {{2,6}}
    53: {{1,1,1,1}}    107: {{1,1,4}}         173: {{1,1,1,3}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320628, with odd case A320629.
The odd case is A340105.
The prime instead of nonprime version:
primes: A006450
products: A076610
strict: A302590
The semiprime instead of nonprime version:
primes: A106349
products: A339112
strict: A340020
The squarefree semiprime instead of nonprime version:
strict: A309356
primes: A322551
products: A339113
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes (A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

Equals A005117 /\ A320628.

A340105 Odd products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 7, 13, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding sets of multisets begins:
     1: {}              91: {{1,1},{1,2}}      173: {{1,1,1,3}}
     7: {{1,1}}         97: {{3,3}}            181: {{1,2,4}}
    13: {{1,2}}        101: {{1,6}}            193: {{1,1,5}}
    19: {{1,1,1}}      103: {{2,2,2}}          197: {{2,2,3}}
    23: {{2,2}}        107: {{1,1,4}}          199: {{1,9}}
    29: {{1,3}}        113: {{1,2,3}}          203: {{1,1},{1,3}}
    37: {{1,1,2}}      131: {{1,1,1,1,1}}      223: {{1,1,1,1,2}}
    43: {{1,4}}        133: {{1,1},{1,1,1}}    227: {{4,4}}
    47: {{2,3}}        137: {{2,5}}            229: {{1,3,3}}
    53: {{1,1,1,1}}    139: {{1,7}}            233: {{2,7}}
    61: {{1,2,2}}      149: {{3,4}}            239: {{1,1,6}}
    71: {{1,1,3}}      151: {{1,1,2,2}}        247: {{1,2},{1,1,1}}
    73: {{2,4}}        161: {{1,1},{2,2}}      251: {{1,2,2,2}}
    79: {{1,5}}        163: {{1,8}}            257: {{3,5}}
    89: {{1,1,1,2}}    167: {{2,6}}            259: {{1,1},{1,1,2}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320629, with not necessarily odd version A320628.
The not necessarily odd version is A340104.
The prime instead of odd nonprime version:
primes: A006450
products: A076610
strict: A302590
The squarefree semiprime instead of odd nonprime version:
strict: A309356
primes: A322551
products: A339113
The semiprime instead of odd nonprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes.
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

Showing 1-8 of 8 results.