A329556
Smallest MM-number of a set of n sets with no singletons.
Original entry on oeis.org
1, 2, 26, 754, 32422, 1523834
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
26: {{},{1,2}}
754: {{},{1,2},{1,3}}
32422: {{},{1,2},{1,3},{1,4}}
1523834: {{},{1,2},{1,3},{1,4},{2,3}}
MM-numbers of sets of sets with no singletons are
A329630.
The case without empty edges is
A329554.
MM-numbers of sets of sets are
A302494.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],_?PrimeQ]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A329629
Products of distinct odd primes of squarefree index.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 113, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237
Offset: 1
The sequence of terms together with their corresponding set-systems begins:
1: {}
3: {{1}}
5: {{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
65: {{2},{1,2}}
67: {{8}}
73: {{2,4}}
Allowing even terms (systems with empty edges) gives
A302494.
-
Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]
A371450
MM-number of the set-system with BII-number n.
Original entry on oeis.org
1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0
The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
1 -> {} -> {}
3 -> {2} -> {{1}}
5 -> {3} -> {{2}}
15 -> {2,3} -> {{1},{2}}
13 -> {6} -> {{1,2}}
39 -> {2,6} -> {{1},{1,2}}
65 -> {3,6} -> {{2},{1,2}}
195 -> {2,3,6} -> {{1},{2},{1,2}}
11 -> {5} -> {{3}}
33 -> {2,5} -> {{1},{3}}
55 -> {3,5} -> {{2},{3}}
165 -> {2,3,5} -> {{1},{2},{3}}
143 -> {5,6} -> {{1,2},{3}}
429 -> {2,5,6} -> {{1},{1,2},{3}}
715 -> {3,5,6} -> {{2},{1,2},{3}}
2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
A019565 gives Heinz number of binary indices.
A070939 gives length of binary expansion.
Cf.
A000720,
A003963,
A087086,
A096111,
A275024,
A302242,
A302505,
A302521,
A326782,
A329557,
A329630,
A368109.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]
Showing 1-3 of 3 results.
Comments