A329661
BII-number of the set-system whose MM-number is A329629(n).
Original entry on oeis.org
0, 1, 2, 8, 4, 3, 128, 16, 32768, 9, 5, 2147483648, 256, 32, 129, 10, 9223372036854775808, 6, 170141183460469231731687303715884105728, 512, 65536, 57896044618658097711785492504343953926634992332820282019728792003956564819968, 130, 17, 32769, 4294967296
Offset: 1
The sequence of all set-systems together with their MM-numbers and BII-numbers begins:
{}: 1 ~ 0
{{1}}: 3 ~ 1
{{2}}: 5 ~ 2
{{3}}: 11 ~ 8
{{1,2}}: 13 ~ 4
{{1},{2}}: 15 ~ 3
{{4}}: 17 ~ 128
{{1,3}}: 29 ~ 16
{{5}}: 31 ~ 32768
{{1},{3}}: 33 ~ 9
{{1},{1,2}}: 39 ~ 5
{{6}}: 41 ~ 2147483648
{{1,4}}: 43 ~ 256
{{2,3}}: 47 ~ 32
{{1},{4}}: 51 ~ 129
{{2},{3}}: 55 ~ 10
{{7}}: 59 ~ 9223372036854775808
{{2},{1,2}}: 65 ~ 6
{{8}}: 67 ~ 170141183460469231731687303715884105728
{{2,4}}: 73 ~ 512
MM-numbers of set-systems are
A329629.
-
fbi[q_]:=If[q=={},0,Total[2^q]/2];
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
das=Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&];
Table[fbi[fbi/@primeMS/@primeMS[n]],{n,das}]
A329557
Smallest MM-number of a set of n nonempty sets.
Original entry on oeis.org
1, 3, 15, 165, 2145, 36465, 1057485, 32782035, 1344063435, 57794727705, 2716352202135, 160264779925965, 10737740255039655, 783855038617894815, 61924548050813690385, 5139737488217536301955, 519113486309971166497455, 56583370007786857148222595, 6393920810879914857749153235
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
3: {{1}}
15: {{1},{2}}
165: {{1},{2},{3}}
2145: {{1},{2},{3},{1,2}}
36465: {{1},{2},{3},{1,2},{4}}
1057485: {{1},{2},{3},{1,2},{4},{1,3}}
MM-numbers of sets of sets are
A302494.
MM-numbers of sets of nonempty sets are
A329629.
The version allowing empty sets is
A329558.
The version without singletons is
A329554.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],1]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
-
a(n) = my(k=1); prod(i=1, n, until(issquarefree(k), k++); prime(k)); \\ Jinyuan Wang, Feb 23 2025
A329630
Products of distinct primes of nonprime squarefree index.
Original entry on oeis.org
1, 2, 13, 26, 29, 43, 47, 58, 73, 79, 86, 94, 101, 113, 137, 139, 146, 149, 158, 163, 167, 181, 199, 202, 226, 233, 257, 269, 271, 274, 278, 293, 298, 313, 317, 326, 334, 347, 349, 362, 373, 377, 389, 397, 398, 421, 439, 443, 449, 466, 467, 487, 491, 499, 514
Offset: 1
The sequence of terms together with their corresponding sets of sets begins:
1: {}
2: {{}}
13: {{1,2}}
26: {{},{1,2}}
29: {{1,3}}
43: {{1,4}}
47: {{2,3}}
58: {{},{1,3}}
73: {{2,4}}
79: {{1,5}}
86: {{},{1,4}}
94: {{},{2,3}}
101: {{1,6}}
113: {{1,2,3}}
137: {{2,5}}
139: {{1,7}}
146: {{},{2,4}}
149: {{3,4}}
158: {{},{1,5}}
163: {{1,8}}
MM-numbers of sets of nonempty sets are
A329629.
Products of primes of nonprime squarefree index are
A320630.
Products of prime numbers of squarefree index are
A302478.
Products of primes of nonprime index are
A320628.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&!MemberQ[primeMS[#],_?PrimeQ]&]
A371450
MM-number of the set-system with BII-number n.
Original entry on oeis.org
1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0
The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
1 -> {} -> {}
3 -> {2} -> {{1}}
5 -> {3} -> {{2}}
15 -> {2,3} -> {{1},{2}}
13 -> {6} -> {{1,2}}
39 -> {2,6} -> {{1},{1,2}}
65 -> {3,6} -> {{2},{1,2}}
195 -> {2,3,6} -> {{1},{2},{1,2}}
11 -> {5} -> {{3}}
33 -> {2,5} -> {{1},{3}}
55 -> {3,5} -> {{2},{3}}
165 -> {2,3,5} -> {{1},{2},{3}}
143 -> {5,6} -> {{1,2},{3}}
429 -> {2,5,6} -> {{1},{1,2},{3}}
715 -> {3,5,6} -> {{2},{1,2},{3}}
2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
A019565 gives Heinz number of binary indices.
A070939 gives length of binary expansion.
Cf.
A000720,
A003963,
A087086,
A096111,
A275024,
A302242,
A302505,
A302521,
A326782,
A329557,
A329630,
A368109.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]
Showing 1-4 of 4 results.
Comments