cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320662 Numbers k for which there are numbers 0 < m <= k such that k^3 + m^3 is a square.

Original entry on oeis.org

2, 8, 18, 21, 26, 32, 37, 46, 50, 65, 70, 72, 84, 88, 91, 98, 104, 105, 112, 128, 148, 162, 184, 189, 190, 200, 234, 242, 249, 260, 273, 280, 288, 312, 330, 333, 336, 338, 345, 352, 354, 364, 371, 392, 407, 414, 416, 420
Offset: 1

Views

Author

Marius A. Burtea, Oct 18 2018

Keywords

Comments

The sequence is infinite since if u is in the sequence then so is u*t^2, t, u >= 1. - Marius A. Burtea and David A. Corneth, Oct 23 2018
For the subsequence k= 8, 18, 32, 50,65, 72, 98, 104, 105,... two or more m exist satisfying the equation. - R. J. Mathar, Jan 22 2025

Examples

			8^3 + 4^3 = 512 + 64 = 576 = 24^2, so 8 is part of the sequence.
18^3 + 9^3 = 5832 + 729 = 6561 = 81^2, so 18 is part of the sequence.
91^3 + 65^3 = 753571 + 274625 = 1028196 = 1014^2, so 91 is part of the sequence.
7^3 + 0^3 = 343 + 0 = 343, 7^3 + 1^3 = 343 + 1 = 344, 7^3 + 2^3 = 343 + 8 = 351,7^3 + 4^3 = 343 + 64 = 407, 7^3 + 5^3 = 343 + 125 = 468, 7^3 + 6^3 = 343 + 216 = 559 and 7^3 + 7^3 = 343 + 343 = 686. Numbers 343, 344, 351, 407, 468, 559 and 686 are not squares, so 7 is not part of the sequence.
		

Crossrefs

Cf. A003325, A003997, A004999, A024670, A086119, A282639 (subsequence for coprime m,k), A050801 (bases of the squares).

Programs

  • Maple
    A320662 := proc(n)
        option remember ;
        local m,k ;
        if n =1 then
            2
        else
            for k from procname(n-1)+1 do
                for m from 1 to k do
                    if issqr(k^3+m^3) then
                        return k ;
                    end if;
                end do:
            end do:
        end if;
    end proc:
    seq(A320662(n),n=1..40) ; # R. J. Mathar, Jan 22 2025
  • Mathematica
    Select[Range@ 420, AnyTrue[Range[#1]^3 + #2, IntegerQ@ Sqrt@ # &] & @@ {#, #^3} &] (* Michael De Vlieger, Nov 05 2018 *)
  • PARI
    is(n) = for(m=1, n, if(issquare(n^3+m^3), return(1))); 0 \\ Felix Fröhlich, Oct 22 2018