A320692 Number of partitions of n with up to five distinct kinds of 1.
1, 5, 11, 16, 22, 33, 49, 70, 98, 135, 184, 248, 330, 436, 572, 743, 959, 1232, 1572, 1994, 2518, 3165, 3961, 4936, 6125, 7575, 9338, 11469, 14041, 17142, 20867, 25331, 30671, 37042, 44629, 53647, 64342, 77007, 91977, 109632, 130426, 154884, 183596, 217250
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=5 of A292622.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, binomial(5, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1)) end: a:= n-> b(n$2): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[5, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]]; a[n_] := b[n, n]; a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020 *)
Formula
a(n) ~ Pi * 2^(5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^5 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021