A320824 T(n, k) = (m*n)!/(k!*(n-k)!)^m with m = 3; triangle read by rows, 0 <= k <= n.
1, 6, 6, 90, 720, 90, 1680, 45360, 45360, 1680, 34650, 2217600, 7484400, 2217600, 34650, 756756, 94594500, 756756000, 756756000, 94594500, 756756, 17153136, 3705077376, 57891834000, 137225088000, 57891834000, 3705077376, 17153136
Offset: 0
Examples
Triangle starts: [0] 1; [1] 6, 6; [2] 90, 720, 90; [3] 1680, 45360, 45360, 1680; [4] 34650, 2217600, 7484400, 2217600, 34650; [5] 756756, 94594500, 756756000, 756756000, 94594500, 756756;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..6],n->List([0..n],k->Factorial(3*n)/(Factorial(k)*Factorial(n-k))^3))); # Muniru A Asiru, Oct 27 2018
-
Magma
[[(Factorial(3*n)/(Factorial(n))^3)*Binomial(n, k)^3: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Oct 27 2018
-
Maple
T := (n, k, m) -> (m*n)!/(k!*(n-k)!)^m: seq(seq(T(n, k, 3), k=0..n), n=0..7);
-
Mathematica
Table[((3*n)!/(n!)^3)*Binomial[n, k]^3, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2018 *)
-
PARI
t(n, k) = (3*n)!/(k!*(n-k)!)^3 trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print("")) /* Print initial 6 rows of triangle as follows: */ trianglerows(6) \\ Felix Fröhlich, Oct 21 2018