cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320824 T(n, k) = (m*n)!/(k!*(n-k)!)^m with m = 3; triangle read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 6, 6, 90, 720, 90, 1680, 45360, 45360, 1680, 34650, 2217600, 7484400, 2217600, 34650, 756756, 94594500, 756756000, 756756000, 94594500, 756756, 17153136, 3705077376, 57891834000, 137225088000, 57891834000, 3705077376, 17153136
Offset: 0

Views

Author

Peter Luschny, Oct 21 2018

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      6,        6;
[2]     90,      720,        90;
[3]   1680,    45360,     45360,      1680;
[4]  34650,  2217600,   7484400,   2217600,    34650;
[5] 756756, 94594500, 756756000, 756756000, 94594500, 756756;
		

Crossrefs

Cf. A007318 (Pascal, m=1), A069466 (m=2), this sequence (m=3).

Programs

  • GAP
    Flat(List([0..6],n->List([0..n],k->Factorial(3*n)/(Factorial(k)*Factorial(n-k))^3))); # Muniru A Asiru, Oct 27 2018
  • Magma
    [[(Factorial(3*n)/(Factorial(n))^3)*Binomial(n, k)^3: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Oct 27 2018
    
  • Maple
    T := (n, k, m) -> (m*n)!/(k!*(n-k)!)^m:
    seq(seq(T(n, k, 3), k=0..n), n=0..7);
  • Mathematica
    Table[((3*n)!/(n!)^3)*Binomial[n, k]^3, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    t(n, k) = (3*n)!/(k!*(n-k)!)^3
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 6 rows of triangle as follows: */
    trianglerows(6) \\ Felix Fröhlich, Oct 21 2018
    

Formula

T(n, k) = ((3*n)!/(n!)^3) * binomial(n, k)^3 = A006480(n)*A181543(n, k).