cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333710 Number of permutations sigma of [n] such that i! divides Product_{k=1..i} sigma(k) for 1 <= i <= n.

Original entry on oeis.org

1, 1, 2, 4, 14, 28, 212, 424, 3060, 13488, 131212, 262424, 6444376, 12888752, 145241952, 2146993212, 40313750564, 80627501128, 2265599072684, 4531198145368, 173216179971224, 3202520631881824, 42018513097187068, 84037026194374136, 7051753589203676704, 50056536119264986708
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2020

Keywords

Examples

			a(4) = 14: 1234, 1432, 2134, 2314, 2341, 2431, 3214, 3241, 3412, 3421, 4132, 4231, 4312, 4321.
a(5) = 28: 12345, 14325, 21345, 23145, 23415, 23451, 23541, 24315, 24351, 25341, 32145, 32415, 32451, 32541, 34125, 34215, 34251, 34521, 41325, 42315, 42351, 43125, 43215, 43251, 43521, 45321, 52341, 54321.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, p) option remember; (n-> `if`(n=0, 1, add(`if`(
          irem(p*n, j, 'q')=0, b(s minus {j}, q), 0), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}, 1):
    seq(a(n), n=0..17);  # Alois P. Heinz, Apr 09 2020
  • Mathematica
    b[s_, p_] := b[s, p] = Module[{n=Length[s], q, r}, If[n==0, 1, Sum[If[{q, r} = QuotientRemainder[p n, j]; r==0, b[s~Complement~{j}, q], 0], {j, s}]]];
    a[n_] := a[n] = If[n>2 && PrimeQ[n], 2 a[n-1], b[Range[n], 1]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
  • PARI
    {a(n) = if(n==0, 1, my(k=0); forperm([1..n], p, if(#Set(vector(n, i, prod(j=1, i, p[j])%i!))==1, k++)); k)}

Formula

a(p) = 2*a(p-1) if p is prime.

Extensions

a(14)-a(25) from Alois P. Heinz, Apr 09 2020

A333892 Number of permutations sigma of [n] such that i divides Product_{k=1..i} sigma(k) for 1 <= i <= n.

Original entry on oeis.org

1, 1, 2, 4, 14, 36, 320, 1328, 7872, 51552, 756480, 5440752, 68999136, 584117952, 9632932800, 152699071104, 1881048314880, 21977611223040, 343998708042240, 4374197540536320, 77078374650869760, 1646804888482037760, 45052372505959096320, 727420047420178022400
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2020

Keywords

Examples

			a(5) = 36: 12345, 14325, 14352, 21345, 23145, 23415, 23451, 23541, 24315, 24351, 25341, 32145, 32415, 32451, 32541, 34125, 34152, 34215, 34251, 34512, 34521, 41325, 41352, 42315, 42351, 43125, 43152, 43215, 43251, 43512, 43521, 45312, 45321, 52341, 54312, 54321.
		

Crossrefs

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=0, 1, `if`(irem(
          mul(i, i=s), n)=0, add(b(s minus {j}), j=s), 0)))(nops(s))
        end:
    a:= n-> b({$1..n}):
    seq(a(n), n=0..17);  # Alois P. Heinz, Apr 09 2020
  • Mathematica
    b[s_] := b[s] = With[{n = Length[s]}, If[n==0, 1, If[Mod[Times@@s, n]==0, Sum[b[s ~Complement~ {j}], {j, s}], 0]]];
    a[n_] := b[Range[n]];
    a /@ Range[0, 20] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
  • PARI
    {a(n) = if(n==0, 1, my(k=0); forperm([1..n], p, if(#Set(vector(n, i, prod(j=1, i, p[j])%i))==1, k++)); k)}

Extensions

a(0), a(13)-a(23) from Alois P. Heinz, Apr 09 2020

A354830 a(n) is the number of permutations p of [n] such that gcd(i, p(i)) > 1 for 2 <= i <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 8, 8, 30, 72, 408, 408, 4104, 4104, 29640, 208704, 1437312, 1437312, 22653504, 22653504, 318695040, 2686493376, 27628410816, 27628410816, 575372874240, 1775480841216, 21115550048256, 132879856582656, 2321256928702464, 2321256928702464, 83095013944442880
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2022

Keywords

Crossrefs

Cf. A320843.

Programs

  • PARI
    a(n) = { my (v=select(x -> (!isprime(x)) || (2*x<=n), [2..n])); matpermanent(matrix(#v, #v, i,j, gcd(v[i],v[j])>1)) } \\ Rémy Sigrist, Jun 07 2022
  • Ruby
    def search(a, num, n)
      if num == n + 1
        @cnt += 1
      else
        (1..n).each{|i|
          if a[i] == 0
            if i == 1 || i.gcd(num) > 1
              a[i] = num
              search(a, num + 1, n)
              a[i] = 0
            end
          end
        }
      end
    end
    def A(n)
      a = [0] * (n + 1)
      @cnt = 0
      search(a, 1, n)
      @cnt
    end
    def A354830(n)
      (0..n).map{|i| A(i)}
    end
    p A354830(15)
    

Formula

a(p) = a(p-1) for primes p.

Extensions

More terms from Rémy Sigrist, Jun 07 2022

A357328 Number of permutations p of [n] such that p(i) divides p(j) if i divides j for 1 <= i <= j <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 6, 4, 2, 2, 6, 6, 24, 24, 24, 6, 24, 24, 24, 12, 12, 12, 48, 48, 240, 240, 120, 48, 48, 48, 240, 144, 96, 96, 480, 480, 2880, 1440, 1440, 720, 4320, 4320, 4320, 4320, 2880, 2880, 20160, 20160, 10080, 10080, 10080, 2880, 20160, 20160, 161280, 60480, 60480, 60480, 120960
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2022

Keywords

Comments

a(n) >= 1.

Examples

			For n = 14, the 4 permutations are:
  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14]
  [1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 11, 12, 13, 10]
  [1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 13, 12, 11, 10]
		

Crossrefs

Cf. A320843.

Programs

  • Ruby
    require 'prime'
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def A(n)
      h = {}
      Prime.each(n).each{|i|
        h[i] = n / i
      }
      h.group_by{|k, v| v}.inject(1){|s, i| s * f(i.last.size)}
    end
    def A357328(n)
      (0..n).map{|i| A(i)}
    end
    p A357328(100)

A354756 a(n) is the number of permutations p of [n] such that lcm(i, p(i)) <= n for all i in [n].

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 56, 64, 192, 332, 1184, 1264, 12192, 12872, 37568, 100836, 311760, 322320, 2338368, 2408848, 14433408, 32058912, 76931008, 78528704, 919469408, 1158792224, 2689828672, 4675217824, 21679173184, 21984820864, 381078324992, 386159441600
Offset: 0

Views

Author

Michel Marcus, Jun 06 2022

Keywords

Crossrefs

Cf. A320843.

Programs

  • Maple
    b:= proc(s, m) option remember; `if`(s={}, 1, add(
         `if`(ilcm(nops(s), i)>m, 0, b(s minus {i}, m)), i=s))
        end:
    a:= n-> b({$1..n}, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 06 2022
  • Mathematica
    b[s_, m_] := b[s, m] = If[s == {}, 1, Sum[
         If[LCM[Length[s], i]>m, 0, b[s~Complement~{i}, m]], {i, s}]];
    a[n_] := b[Range[n], n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)
  • PARI
    a(n) = {my(nb=0); for (i=1, n!, my(p=numtoperm(n, i), ok=1); for (k=1, #p, if (lcm(k, p[k]) > n, ok = 0; break);); if (ok, nb++);); nb;}

Extensions

a(12)-a(20) from Seiichi Manyama, Jun 06 2022
a(0), a(21)-a(31) from Alois P. Heinz, Jun 06 2022
Showing 1-5 of 5 results.